Publications by authors named "Kate R Griffiths"

Laboratory testing methods to confirm the identity of meat products and eliminate food fraud regularly rely on PCR amplification of extracted DNA, with most published assays detecting mitochondrial sequences, providing sensitive presence/absence results. By targeting single-copy nuclear targets instead, relative quantification measurements are achievable, providing additional information on the proportions of meat species detected. In this Methods paper, new assays for horse, donkey, duck, kangaroo, camel, water buffalo and crocodile have been developed to expand the range of species that can be quantified, and a previously published reference assay targeting the myostatin gene has been modified to include marsupials and reptiles.

View Article and Find Full Text PDF

Accurate estimation of total DNA concentration (mass concentration, e.g., ng/muL) that is traceable to the International System of Units (SI) is a crucial starting point for improving reproducible measurements in many applications involving nucleic acid testing and requires a DNA reference material which has been certified for its total DNA concentration.

View Article and Find Full Text PDF

Real-time quantitative polymerase chain reaction (qPCR) is the industry standard technique for the quantitative analysis of nucleic acids due to its unmatched sensitivity and specificity. Optimisation and improvements of this fundamental technique over the past decade have largely consisted of attempts to allow faster and more accurate ramping between critical temperatures by improving assay reagents and the thermal geometry of the PCR chamber. Small gold nanoparticles (Au-NPs) have been reported to improve PCR yield under fast cycling conditions.

View Article and Find Full Text PDF

Using a statistical approach, sampling plans for the semiquantitative detection of genetically modified (GM) canola within a bulk seed sample can be developed and tailored to meet different GM thresholds, costs, and confidence limits. This is achieved by changing the number of subsamples analyzed, the number of seeds per subsample, and the percentage of positive results allowed. These sampling plans must be devised carefully, taking into account the detection capability of the analytical assay.

View Article and Find Full Text PDF