Publications by authors named "Kate McGee"

Cohort studies investigating respiratory disease pathogenesis aim to pair mechanistic investigations with longitudinal virus detection but are limited by the burden of methods tracking illness over time. In this study, we explored the utility of a purpose-built AERIAL TempTracker smartphone app to assess real-time data collection and adherence monitoring and overall burden to participants, while identifying symptomatic respiratory illnesses in two birth cohort studies. We observed strong adherence with daily app usage over the six-month study period, with positive feedback from participant families.

View Article and Find Full Text PDF

Rationale: Fibrosis is an important structural contributor to formation of atrial fibrillation (AF) substrate in heart failure. Transforming growth factor-β (TGF-β) signaling is thought to be intricately involved in creation of atrial fibrosis.

Objective: We hypothesized that gene-based expression of dominant-negative type II TGF-β receptor (TGF-β-RII-DN) in the posterior left atrium in a canine heart failure model will sufficiently attenuate fibrosis-induced changes in atrial conduction and restitution to decrease AF.

View Article and Find Full Text PDF

Recombination varies greatly among species, as illustrated by the poor conservation of the recombination landscape between humans and chimpanzees. Thus, shorter evolutionary time frames are needed to understand the evolution of recombination. Here, we analyze its recent evolution in humans.

View Article and Find Full Text PDF

Background: ABCB5 is a member of the ABC protein superfamily, which includes the transporters ABCB1, ABCC1 and ABCG2 responsible for causing drug resistance in cancer patients and also several other transporters that have been linked to human disease. The ABCB5 full transporter (ABCB5.ts) is expressed in human testis and its functional significance is presently unknown.

View Article and Find Full Text PDF

The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carriers. In stage 1 using the Affymetrix 6.

View Article and Find Full Text PDF

Context: NRG1 is a schizophrenia candidate gene and plays an important role in brain development and neural function. Schizophrenia is a complex disorder, with etiology likely due to epistasis.

Objective: To examine epistasis between NRG1 and selected N-methyl-d-aspartate-glutamate pathway partners implicated in its effects, including ERBB4, AKT1, DLG4, NOS1, and NOS1AP.

View Article and Find Full Text PDF

Background: Malaria kills more people worldwide than all inherited human genetic disorders combined. To characterize how the parasites causing this disease adapt to different host environments, we compared the evolutionary genomics of two distinct groups of malaria pathogens in order to identify critical properties associated with infection of different hosts: those parasites infecting hominids (Plasmodium falciparum and P. reichenowi) versus parasites infecting rodent hosts (P.

View Article and Find Full Text PDF

One goal in sequencing the Plasmodium falciparum genome, the agent of the most lethal form of malaria, is to discover vaccine and drug targets. However, identifying those targets in a genome in which approximately 60% of genes have unknown functions is an enormous challenge. Because the majority of known malaria antigens and drug-resistant genes are highly polymorphic and under various selective pressures, genome-wide analysis for signatures of selection may lead to discovery of new vaccine and drug candidates.

View Article and Find Full Text PDF

Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasite's short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations.

View Article and Find Full Text PDF