The objective of this study was to characterize the complement-inhibiting activity of SAR445088, a novel monoclonal antibody specific for the active form of C1s. Wieslab® and hemolytic assays were used to demonstrate that SAR445088 is a potent, selective inhibitor of the classical pathway of complement. Specificity for the active form of C1s was confirmed in a ligand binding assay.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the main cause of age-related dementia and currently affects approximately 5.7 million Americans. Major brain changes associated with AD pathology include accumulation of amyloid beta (Aβ) protein fragments and formation of extracellular amyloid plaques.
View Article and Find Full Text PDFThe cellular prion protein (PrP) is a zinc-binding protein that contributes to the regulation of Zn and other divalent species of the central nervous system. Zn coordinates to the flexible, N-terminal repeat region of PrP and drives a tertiary contact between this repeat region and a well-defined cleft of the C-terminal domain. The tertiary structure promoted by Zn is thought to regulate inherent PrP toxicity.
View Article and Find Full Text PDFEuropean J Org Chem
September 2017
Aldonitrones derived from spiro[2.4]hepta-4,6-diene-1-carbaldehyde and its benzo analog undergo a tandem uncatalyzed intramolecular cyclopropane-nitrone cyclization-5,6-dihydro-1,2-oxazine cycloreversion to give cyclopentadienones. Similarly, the NH-nitrone generated in situ from spiro[cyclopropane-1,1'-indene]carbaldehyde oxime leads to benzocyclopentadienone (1-inden-1-one) by the same mechanism.
View Article and Find Full Text PDFCopper plays a critical role in prion protein (PrP) physiology. Cu(2+) binds with high affinity to the PrP N-terminal octarepeat (OR) domain, and intracellular copper promotes PrP expression. The molecular details of copper coordination within the OR are now well characterized.
View Article and Find Full Text PDFThe increased proteolytic activity of membrane-bound and secreted proteases on the surface of cancer cells and in the transformed stroma is a common characteristic of aggressive metastatic prostate cancer. We describe here the development of an active site-specific probe for detecting a secreted peritumoral protease expressed by cancer cells and the surrounding tumor microenvironment. Using a human fragment antigen-binding phage display library, we identified a human antibody termed U33 that selectively inhibited the active form of the protease urokinase plasminogen activator (uPA, PLAU).
View Article and Find Full Text PDFHuman lipoxygenases (LOXs) are a family of iron-containing enzymes which catalyze the oxidation of polyunsaturated fatty acids to provide the corresponding bioactive hydroxyeicosatetraenoic acid (HETE) metabolites. These eicosanoid signaling molecules are involved in a number of physiologic responses such as platelet aggregation, inflammation, and cell proliferation. Our group has taken a particular interest in platelet-type 12-(S)-LOX (12-LOX) because of its demonstrated role in skin diseases, diabetes, platelet hemostasis, thrombosis, and cancer.
View Article and Find Full Text PDFTarget-mediated toxicity constitutes a major limitation for the development of therapeutic antibodies. To redirect the activity of antibodies recognizing widely distributed targets to the site of disease, we have applied a prodrug strategy to create an epidermal growth factor receptor (EGFR)-directed Probody therapeutic-an antibody that remains masked against antigen binding until activated locally by proteases commonly active in the tumor microenvironment. In vitro, the masked Probody showed diminished antigen binding and cell-based activities, but when activated by appropriate proteases, it regained full activity compared to the parental anti-EGFR antibody cetuximab.
View Article and Find Full Text PDF