Publications by authors named "Kate M Van Pelt"

Targeted regulation of cellular proteostasis machinery represents a promising strategy for the attenuation of pathological protein aggregation. Recent work suggests that the unfolded protein response in the endoplasmic reticulum (UPR ) directly regulates the aggregation and toxicity of expanded polyglutamine (polyQ) proteins. However, the mechanisms underlying this phenomenon remain poorly understood.

View Article and Find Full Text PDF

Polyglutamine (polyQ) tract expansion leads to proteotoxic misfolding and drives a family of nine diseases. We study spinal and bulbar muscular atrophy (SBMA), a progressive degenerative disorder of the neuromuscular system caused by the polyQ androgen receptor (AR). Using a knock-in mouse model of SBMA, AR113Q mice, we show that E3 ubiquitin ligases which are a hallmark of the canonical muscle atrophy machinery are not induced in AR113Q muscle.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are a heterogeneous group of aging-associated disorders characterized by the disruption of cellular proteostasis machinery and the misfolding of distinct protein species to form toxic aggregates in neurons. The increasing prevalence of NDs represents a growing healthcare burden worldwide, a concern compounded by the fact that few, if any, treatments exist to target the underlying cause of these diseases. Consequently, the application of a high-throughput, physiologically relevant model system to studies dissecting the molecular mechanisms governing ND pathology is crucial for identifying novel avenues for the development of targeted therapeutics.

View Article and Find Full Text PDF