Use of multicellular tumor spheroids (MTS) to investigate therapies has gained impetus because they have potential to mimic factors including zonation, hypoxia and drug-resistance. However, analysis remains difficult and often destroys 3D integrity. Here we report an optical technique using targeted nanosensors that allows in situ 3D mapping of redox potential gradients whilst retaining MTS morphology and function.
View Article and Find Full Text PDFMeasuring markers of stress such as pH and redox potential are important when studying toxicology in in vitro models because they are markers of oxidative stress, apoptosis and viability. While surface enhanced Raman spectroscopy is ideally suited to the measurement of redox potential and pH in live cells, the time-intensive nature and perceived difficulty in signal analysis and interpretation can be a barrier to its broad uptake by the biological community. In this paper we detail the development of signal processing and analysis algorithms that allow SERS spectra to be automatically processed so that the output of the processing is a pH or redox potential value.
View Article and Find Full Text PDFThe measurement of intracellular analytes has been key in understanding cellular processes and function, and the use of biological nanosensors has revealed the spatial and temporal variation in their concentrations. In particular, ratiometric nanosensors allow quantitative measurements of analyte concentrations. The present review focuses on the recent advances in ratiometric intracellular biological nanosensors, with an emphasis on their utility in measuring analytes that are important in cell function.
View Article and Find Full Text PDF