Publications by authors named "Kate L Fox"

Phosphorylcholine (ChoP) can be found in all life forms. Although this molecule was first thought to be uncommon in bacteria, it is now appreciated that many bacteria express ChoP on their surface. ChoP is usually attached to a glycan structure, but in some cases, it is added as a post-translational modification to proteins.

View Article and Find Full Text PDF

Non-typeable Haemophilus influenzae (NTHi) is a human restricted commensal and pathogen that elicits inflammation by adhering to and invading airway epithelia cells: transcytosis across these cells can result in systemic infection. NTHi strain R2866 was isolated from the blood of a normal 30-month old infant with meningitis, and is unusual for NTHi in that it is able to cause systemic infection. Strain R2866 is able to replicate in normal human serum due to expression of lgtC which mimics human blood group p(k).

View Article and Find Full Text PDF

Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles.

View Article and Find Full Text PDF

Surface structures in Haemophilus influenzae are subject to rapid ON/OFF switching of expression, a process termed phase variation. We analyse tetranucleotide repeats controlling phase variation in lipo-oligosaccharide (LOS) genes of H. influenzae in paired isolates from both the nasopharynx and middle ears of paediatric patients with chronic or recurrent otitis media.

View Article and Find Full Text PDF

The HMWABC system of non-typeable Haemophilus influenzae (NTHi) encodes the HMWA adhesin glycoprotein, which is glycosylated by the HMWC glycosyltransferase. HMWC is a cytoplasmic N-glycosyltransferase, homologues of which are widespread in the Pasteurellaceae. We developed an assay for nonbiased detection of glycoproteins in NTHi based on metabolic engineering of the Leloir pathway and growth in media containing radiolabelled monosaccharides.

View Article and Find Full Text PDF

O-glycosylation of proteins in Neisseria meningitidis is catalyzed by PglL, which belongs to a protein family including WaaL O-antigen ligases. We developed two hidden Markov models that identify 31 novel candidate PglL homologs in diverse bacterial species, and describe several conserved sequence and structural features. Most of these genes are adjacent to possible novel target proteins for glycosylation.

View Article and Find Full Text PDF

Phase variable restriction-modification (R-M) systems have been identified in a range of pathogenic bacteria. In some it has been demonstrated that the random switching of the mod (DNA methyltransferase) gene mediates the coordinated expression of multiple genes and constitutes a phasevarion (phase variable regulon). ModA of Neisseria and Haemophilus influenzae contain a highly variable, DNA recognition domain (DRD) that defines the target sequence that is modified by methylation and is used to define modA alleles.

View Article and Find Full Text PDF

In several host-adapted pathogens, phase variation has been found to occur in genes that encode methyltransferases associated with type III restriction-modification systems. It was recently shown that in the human pathogens Haemophilus influenzae, Neisseria gonorrhoeae and Neisseria meningitidis phase variation of a type III DNA methyltransferase, encoded by members of the mod gene family, regulates the expression of multiple genes. This novel genetic system has been termed the 'phasevarion' (phase-variable regulon).

View Article and Find Full Text PDF

Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a "phasevarion"), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens.

View Article and Find Full Text PDF

The genes of the lic1 operon (lic1A to lic1D) are responsible for incorporation of phosphocholine (PCho) into the lipopolysaccharide (LPS) of Haemophilus influenzae. PCho plays a multifaceted role in the commensal and pathogenic lifestyles of a range of mucosal pathogens, including H. influenzae.

View Article and Find Full Text PDF

Phase variation, the high-frequency on/off switching of gene expression, is a common feature of host-adapted bacterial pathogens. Restriction-modification (R-M) systems, which are ubiquitous among bacteria, are classically assigned the role of cellular defence against invasion of foreign DNA. These enzymes are not obvious candidates for phase variable expression, a characteristic usually associated with surface-expressed molecules subject to host immune selection.

View Article and Find Full Text PDF

Phase variably expressed (randomly switching) methyltransferases associated with type III restriction-modification (R-M) systems have been identified in a variety of pathogenic bacteria. We have previously shown that a phase variable methyltransferase (Mod) associated with a type III R-M system in Haemophilus influenzae strain Rd coordinates the random switching of expression of multiple genes, and constitutes a phase variable regulon--'phasevarion'. We have now identified the recognition site for the Mod methyltransferase in H.

View Article and Find Full Text PDF

The lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae (NTHi) can be substituted at various positions by N-acetylneuraminic acid (Neu5Ac). LPS sialylation plays an important role in pathogenesis. The only LPS sialyltransferase characterized biochemically to date in H.

View Article and Find Full Text PDF

Many of the genes for lipopolysaccharide (LPS) biosynthesis in Haemophilus influenzae are phase variable. The mechanism of this variable expression involves slippage of tetranucleotide repeats located within the reading frame of these genes. Based on this, we hypothesized that tetranucleotide repeat sequences might be used to identify as yet unrecognized LPS biosynthetic genes.

View Article and Find Full Text PDF