Publications by authors named "Kate Kaminska"

A method of rapidly identifying and imaging suspended nanotubes by scanning electron microscopy is reported. Nanotubes are visible in high contrast and even at low magnification. The contrast can be explained by considering the effect that the charge on the nanotube has on the substrate.

View Article and Find Full Text PDF

Rugate filters are thin-film optical interference coatings with sinusoidal variation of the refractive index. Several of these filters were fabricated with glancing angle deposition, which exploits atomic competition during growth to create nanoporous materials with controllable effective refractive index. This method enables the fabrication of devices with almost arbitrary refractive index profiles varying between the ambient, 1.

View Article and Find Full Text PDF

We present a design for a biaxial thin-film coated-plate polarizing beam splitter that transmits the p-polarized component of a beam of light without change of direction and reflects the s-polarized component. The beam splitter has a periodic structure and is planned for fabrication by serial bideposition in mutually orthogonal planes. Recent experimental data for form-birefringent silicon is used to establish the feasibility of the design for a beam splitter to be used at 1310 nm and at an angle of 45 degrees in air.

View Article and Find Full Text PDF

We report an experimental study of enhanced optical birefringence in silicon thin films on glass substrates. Form anisotropy is introduced as an atomic-scale morphological structure through dynamic control of growth geometry. The resulting birefringence is large compared with naturally anisotropic crystals and is comparable to two-dimensional photonic crystals.

View Article and Find Full Text PDF

Anisotropic optical coatings offer unique polarizing properties, unmatched by conventional isotropic devices. Here we demonstrate the fabrication of a birefringent omnidirectional reflector, a type of photonic crystal, which exhibits complete reflection of radiation at 1.1 microm for all incidence angles and polarizations.

View Article and Find Full Text PDF

Porous materials with nanometer-scale structure are important in a wide variety of applications including electronics, photonics, biomedicine, and chemistry. Recent interest focuses on understanding and controlling the properties of these materials. Here we demonstrate porous silicon interference filters, deposited in vacuum with a technique that enables continuous variation of the refractive index between that of bulk silicon and that of the ambient (n approximately 3.

View Article and Find Full Text PDF