Emerg Microbes Infect
December 2025
The current outbreak of HPAI H5N1 virus infections in dairy cattle in the USA underscores the need for easily accessible methods to rapidly assess host susceptibility for infection with known and emerging influenza viruses. Here we show that lung slice cultures from calves provide a useful method to rapidly screen host susceptibility to a range of influenza A viruses.
View Article and Find Full Text PDFSince its discovery in 2019, multiple variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been identified. This study investigates virus spread and associated pathology in the upper and lower respiratory tracts of Syrian golden hamsters at 4 days post intranasal SARS-CoV-2 Omicron infection, in comparison to infection with variants of concern (VOCs) Gamma and Delta as well as ancestral strain 614 G. Pathological changes in the upper and lower respiratory tract of VOC Omicron infected hamsters are milder than those caused by other investigated strains.
View Article and Find Full Text PDFThe ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays notable immune escape potential through mutations at key antigenic sites on the spike protein. Many of these mutations localize to the spike protein ACE2 receptor binding domain, annulling the neutralizing activity of therapeutic antibodies that were effective against other variants of concern (VOCs) earlier in the pandemic. Here, we identified a receptor-blocking human monoclonal antibody, 87G7, that retained potent in vitro neutralizing activity against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta, and Omicron (BA.
View Article and Find Full Text PDFInfluenza viruses cause a significant number of infections and deaths annually. In addition to seasonal infections, the risk of an influenza virus pandemic emerging is extremely high owing to the large reservoir of diverse influenza viruses found in animals and the co-circulation of many influenza subtypes which can reassort into novel strains. Development of a universal influenza vaccine has proven extremely challenging.
View Article and Find Full Text PDFThis study describes the protective efficacy of a novel influenza plasmid DNA vaccine in the ferret challenge model. The rationally designed polyvalent influenza DNA vaccine encodes haemagglutinin and neuraminidase proteins derived from less glycosylated pandemic H1N1 (2009) and H3N2 (1968) virus strains as well as the nucleoprotein (NP) and matrix proteins (M1 and M2) from a different pandemic H1N1 (1918) strain. Needle-free intradermal immunisation with the influenza DNA vaccine protected ferrets against homologous challenge with an H1N1pdm09 virus strain, demonstrated by restriction of viral replication to the upper respiratory tract and reduced duration of viral shedding post-challenge.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19.
View Article and Find Full Text PDFDuring a pandemic, the availability of specific pathogen free chicken eggs is a major bottleneck for up-scaling response to the demand for influenza vaccine. This has led us to explore the use of Madin-Darby Canine Kidney (MDCK) cells for the manufacture of live attenuated influenza vaccine (LAIV) that provides production flexibility and speed. The present study reports the comparison of the immunogenicity and efficacy of two MDCK-based LAIVs against two egg-based LAIVs prepared from the same pandemic potential strains of H5 and H7 subtypes after a single dose of the vaccine followed by a challenge with a homologous wild type strain.
View Article and Find Full Text PDFAdjuvanted whole inactivated virus (WIV) influenza vaccines show promise as broadly protective influenza vaccine candidates. Using WIV as basis we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the liposome-based adjuvants CAF01 and CAF09 and the protein-based adjuvants CTA1-DD and CTA1-3M2e-DD and evaluated whether one or more of the adjuvants could induce broadly protective immunity. Mice were immunized with WIV prepared from A/Puerto Rico/8/34 (H1N1) virus intramuscularly with or without CAF01 or intranasally with or without CAF09, CTA1-DD, or CTA1-3M2e-DD, followed by challenge with homologous, heterologous or heterosubtypic virus.
View Article and Find Full Text PDFSequential infection with antigenically distinct influenza viruses induces cross-protective immune responses against heterologous virus strains in animal models. Here we investigated whether sequential immunization with antigenically distinct influenza vaccines can also provide cross-protection. To this end, we compared immune responses and protective potential against challenge with A(H1N1)pdm09 in mice infected sequentially with seasonal A(H1N1) virus followed by A(H3N2) virus or immunized sequentially with whole inactivated virus (WIV) or subunit (SU) vaccine derived from these viruses.
View Article and Find Full Text PDFThe current gold-standard potency test for inactivated influenza vaccines is the single radial immunodiffusion (SRD) assay. A number of alternative potency tests for inactivated influenza vaccines have been proposed in recent years. Evaluation of these new potency tests commonly involves comparison with SRD, in order to ascertain that the new method obtains values that correlate with those measured by the standard potency test.
View Article and Find Full Text PDFBackground And Methods: Highly pathogenic avian influenza (HPAI) viruses constitute a pandemic threat and the development of effective vaccines is a global priority. Sixty adults were recruited into a randomized clinical trial and were intramuscularly immunized with two virosomal vaccine H5N1 (NIBRG-14) doses (21 days apart) of 30 μg HA alone or 1.5, 7.
View Article and Find Full Text PDFHighly pathogenic avian influenza H5N1 infection remains a public health threat and vaccination is the best measure of limiting the impact of a potential pandemic. Mucosal vaccines have the advantage of eliciting immune responses at the site of viral entry, thereby preventing infection as well as further viral transmission. In this study, we assessed the protective efficacy of hemagglutinin (HA) from the A/Indonesia/05/05 (H5N1) strain of influenza virus that was produced by transient expression in plants.
View Article and Find Full Text PDFThe H1N1 influenza pandemic in 2009 highlighted the need for the rapid generation of candidate vaccine viruses (CVVs) against an A/California/7/2009-like virus. The first available CVVs gave low protein yields in eggs but improved yields were achieved for second generation CVVs which contained amino acid substitutions compared to their precursor viruses. In this study, we investigated the basis for the increased virus protein yield of CVV NIBRG-121xp and whether the improved yield characteristics could be transferred between this virus and two other CVVs, NYMC X-179A and NYMC X-181.
View Article and Find Full Text PDFThe candidate pandemic H1N1 vaccine virus NIBRG-121 was derived by reverse genetics and comprises the hemagglutinin (HA) and neuraminidase (NA) genes from A/California/7/2009 (CAL) on an A/Puerto Rico/8/34 (PR8) backbone. NIBRG-121 was found to grow poorly in eggs, compared to seasonal H1N1 candidate vaccine viruses. Based on our previous study with H5N1 candidate vaccine viruses, we generated two new viruses with chimeric PR8/CAL HA genes.
View Article and Find Full Text PDFWild type human influenza viruses do not usually grow well in embryonated hens' eggs, the substrate of choice for the production of inactivated influenza vaccine, and vaccine viruses need to be developed specifically for this purpose. In the event of a pandemic of influenza, vaccine viruses need to be created with utmost speed. At the onset of the current A(H1N1) pandemic in April 2009, a network of laboratories began a race against time to develop suitable candidate vaccine viruses.
View Article and Find Full Text PDFThe candidate vaccine virus NIBRG-14 was derived by reverse genetics and comprises the haemagglutinin (HA) and neuraminidase (NA) genes derived from the clade 1 virus A/Viet Nam/1194/2004 on an A/Puerto Rico/8/34 (PR8) backbone. The HA gene was modified to remove the multibasic cleavage site motif associated with high pathogenicity. Reports from manufacturers, confirmed by data generated in this laboratory, have shown that this virus yields a low amount of HA antigen.
View Article and Find Full Text PDF