Sickle cell crises occur frequently during pregnancy and are difficult to treat, even with high-dose opioids. Analgesia with ketamine has been suggested as an alternative, but its use during pregnancy is underreported. Two pregnant patients with uncontrolled sickle cell pain were treated with ketamine.
View Article and Find Full Text PDFSclerostin is a glycoprotein secreted by osteocytes and inhibits osteoblastogenesis via inhibition of Wnt signaling. We hypothesized that sclerostin antibody (Scl-AbIII) would accelerate the healing of a murine femoral non-critical size bone defect model. A unilateral and unicortical 0.
View Article and Find Full Text PDFUnderstanding how relevant cell types respond to wear particles will reveal new avenues for treating osteolysis following joint replacements. In this study, we investigate the effects of ultrahigh molecular weight polyethylene (UHMWPE) particles on preosteoblast migration and function. We infused UHMWPE particles or saline into the left femur of mice and injected luciferase-expressing preosteoblasts (MC3T3 cells) into each left ventricle.
View Article and Find Full Text PDFAlthough iliac crest autologous bone graft remains the gold standard for treatment of bone defects, delayed- and nonunions, and arthrodeses, several alternative strategies have been attempted, including the use of mesenchymal stem cells. Whether cells from the osteoblast lineage demonstrate systemic recruitment to an acute bone defect or fracture, and whether these cells directly participate in bone healing is controversial. This study tests two hypotheses: (1) that exogenous murine MC3T3-E1 osteoprogenitor cells with a high propensity for osteoblast differentiation are able to systemically migrate to a bone defect and (2) that the migrated MC3T3-E1 cells enhance bone healing.
View Article and Find Full Text PDFThe biological mechanisms leading to periprosthetic osteolysis involve both chemokines and the monocyte/macrophage cell lineage. Whether MCP-1 plays a major role in macrophage recruitment in the presence of wear particles is unknown. We tested two hypotheses: (1) that exogenous local delivery of MCP-1 induces systematic macrophage recruitment and (2) that blockade of the MCP-1 ligand-receptor axis decreases macrophage recruitment and osteolysis in the presence of ultra high molecular weight polyethylene (UHMWPE) particles.
View Article and Find Full Text PDFNoninvasive assessment of engineered cartilage properties would enable better control of the developing tissue towards the desired structural and compositional endpoints through optimization of the biochemical environment in real time. The objective of this study is to assess the matrix constituents of cartilage using near-infrared spectroscopy (NIRS), a technique that permits full-depth assessment of developing engineered tissue constructs. Mid-infrared (mid-IR) and NIR data were acquired from full-thickness cartilage constructs that were grown up to 4 weeks with and without mechanical stimulation.
View Article and Find Full Text PDFNoninvasive monitoring of matrix development in tissue-engineered cartilage constructs would permit ongoing assessment with the ability to modify culture conditions during development to optimize tissue characteristics. In this study, chondrocytes seeded in a collagen hydrogel were exposed for 20 min/day to pulsed low-intensity ultrasound (PLIUS) at 30 mWcm(-2) and cultured for up to 5 weeks. Biochemical assays, histology, immunohistochemistry, Fourier transform infrared spectroscopy, and magnetic resonance imaging (MRI) were performed at weeks 3 and 5 after initiation of growth.
View Article and Find Full Text PDF