We sought to better understand the immune response during the immediate post-diagnosis phase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by identifying molecular associations with longitudinal disease outcomes. Multi-omic analyses identified differences in immune cell composition, cytokine levels, and cell subset-specific transcriptomic and epigenomic signatures between individuals on a more serious disease trajectory (Progressors) as compared to those on a milder course (Non-progressors). Higher levels of multiple cytokines were observed in Progressors, with IL-6 showing the largest difference.
View Article and Find Full Text PDFThe pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a rapid response by the scientific community to further understand and combat its associated pathologic etiology. A focal point has been on the immune responses mounted during the acute and post-acute phases of infection, but the immediate post-diagnosis phase remains relatively understudied. We sought to better understand the immediate post-diagnosis phase by collecting blood from study participants soon after a positive test and identifying molecular associations with longitudinal disease outcomes.
View Article and Find Full Text PDFCurr Opin Organ Transplant
June 2018
Purpose Of Review: Despite over 60 years of progress in the field of since the first organ transplant, insufficient organ preservation capabilities still place profound constraints on transplantation. These constraints play multiple and compounding roles in the predominant limitations of the field: the severe shortages of transplant organs, short-term and long-term posttransplant outcomes and complications, the unmet global need for development of transplant infrastructures, and economic burdens that limit patient access to transplantation and contribute to increasing global healthcare costs. This review surveys ways that advancing preservation technologies can play a role in each of these areas, ultimately benefiting thousands if not millions of patients worldwide.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2018
In mammalian cells, IFN responses that occur during RNA and DNA virus infections are activated by distinct signaling pathways. The RIG-I-like-receptors (RLRs) bind viral RNA and engage the adaptor MAVS (mitochondrial antiviral signaling) to promote IFN expression, whereas cGAS (cGMP-AMP synthase) binds viral DNA and activates an analogous pathway via the protein STING (stimulator of IFN genes). In this study, we confirm that STING is not necessary to induce IFN expression during RNA virus infection but also find that STING is required to restrict the replication of diverse RNA viruses.
View Article and Find Full Text PDFInfections can cause a multitude of stresses on the host and microbe. To detect potential infections, the mammalian immune system utilizes several families of pattern recognition receptors, which survey the intracellular and extracellular environments for microbial products. Members of each receptor family induce antimicrobial effector responses, which include inflammatory cytokine or interferon expression, downregulation of protein synthesis, or host cell death.
View Article and Find Full Text PDFTo prevent the spread of infection, an invading pathogen must first be recognized by the innate immune system. Host pattern recognition receptors detect distinct pathogen-associated molecules and induce the transcription and release of interferon and inflammatory molecules to resolve infection. Unlike infections with pathogens that replicate autonomously from the host, viral infections blur the boundaries of self and non-self.
View Article and Find Full Text PDFType I interferon responses are considered the primary means by which viral infections are controlled in mammals. Despite this view, several pathogens activate antiviral responses in the absence of type I interferons. The mechanisms controlling type I interferon-independent responses are undefined.
View Article and Find Full Text PDFLentiviral vectors are vehicles for gene delivery that were originally derived from the human immunodeficiency virus type-1 (HIV-1) lentivirus. These vectors are defective for replication, and thus considered relatively safe, but are capable of stably integrating into the genomic DNA of a broad range of dividing and nondividing mammalian cell types. The ability to stably integrate at semi-random genomic positions make lentiviral vectors a unique and ideal tool for studying stochastic variation in gene expression.
View Article and Find Full Text PDF