CpG DNA is a potent activator of the innate immune system. Here the protective effects of CpG DNA are assessed against the facultative intracellular pathogen Francisella tularensis. Dosing of mice with CpG DNA provided protection against disease caused by F.
View Article and Find Full Text PDFBurkholderia mallei is a Gram-negative bacillus causing the disease glanders in humans. During intraperitoneal infection, BALB/c mice develop a chronic disease characterised by abscess formation where mice normally die up to 70 days post-infection. Although cytokine responses have been investigated, cellular immune responses to B.
View Article and Find Full Text PDFStimulation of protective immune responses against intracellular pathogens is difficult to achieve using non-replicating vaccines. BALB/c mice immunized by intramuscular injection with killed Francisella tularensis (live vaccine strain) adjuvanted with preformed immune stimulating complexes admixed with CpG, were protected when systemically challenged with a highly virulent strain of F. tularensis (Schu S4).
View Article and Find Full Text PDFFrancisella tularensis is the causative agent of tularaemia, a disease which occurs naturally in some countries in the northern hemisphere. Recently, there has been a high level of interest in devising vaccines against the bacterium because of the potential for it to be used as a bioterrorism agent. Previous human volunteer studies have shown that a strain of F.
View Article and Find Full Text PDFBurkholderia mallei is a gram-negative bacterium which causes the potentially fatal disease glanders in humans; however, there is little information concerning cell-mediated immunity to this pathogen. The role of gamma interferon (IFN-gamma) during B. mallei infection was investigated using a disease model in which infected BALB/c mice normally die between 40 and 60 days postinfection.
View Article and Find Full Text PDFFrancisella tularensis is a facultative intracellular bacterium responsible for the disease tularemia. Analysis of the fully sequenced genome of the virulent F. tularensis strain SCHU S4 has led to the identification of twenty ATP binding cassette (ABC) systems, of which five appear to be non-functional.
View Article and Find Full Text PDFThere is a requirement for vaccines to protect against pathogens that may be misused for bioterrorism or biowarfare purposes. In particular, biodefence vaccines are required that may be used for safe and easy immunisation of populations and that can rapidly induce mucosal immunity to provide protection at the lung surface against a range of airborne agents. To address this need, recombinant Salmonella vaccines are being developed.
View Article and Find Full Text PDFLive, attenuated bacteria are effective vectors for heterologous antigen delivery. However, loss of heterologous gene-bearing plasmids is problematic, and antibiotics and their resistance genes are not desirable for in vivo DNA vaccine delivery due to biosafety and regulatory concerns. To solve this problem, we engineered the first vaccine delivery strain that has no requirement for antibiotics or other selectable marker genes to maintain the recombinant plasmid.
View Article and Find Full Text PDFCpG-DNA has been described as a potent activator of the innate immune system, with potential to protect against infection caused by a range of pathogens in a non-specific manner. Here two classes of CpG-DNA (CpG-A and CpG-B) have been investigated for their abilities to protect mice from infection with an orthopoxvirus (vaccinia virus). Dosing with either CpG-A or B by the intraperitonal or intranasal route protected mice against a subsequent intranasal challenge with vaccinia virus.
View Article and Find Full Text PDFLive attenuated mutants of several pathogenic bacteria have been exploited as potential vaccine vectors for heterologous antigen delivery by the mucosal route. Such live vectors offer the advantage of potential delivery in a single oral, intranasal or inhalational dose, stimulating both systemic and mucosal immune responses. Over the years, a range of strategies have been developed to allow controlled and stable delivery of antigens and improved immunogenicity where required.
View Article and Find Full Text PDFA recombinant strain of attenuated Salmonella enterica serovar Typhi surface-expressing Yersinia pestis F1 antigen was generated by transforming strain BRD1116 (aroA aroC htrA) with plasmid pAH34L encoding the Y. pestis caf operon. BRD1116/pAH34L was stable in vitro and in vivo.
View Article and Find Full Text PDFA gene cluster encoding enzymes involved in LPS O antigen biosynthesis was identified from the partial genome sequence of Francisella tularensis subsp. tularensis Schu S4. All of the genes within the cluster were assigned putative functions based on sequence similarity with genes from O antigen biosynthetic clusters from other bacteria.
View Article and Find Full Text PDFProtective immunity against infection with Bacillus anthracis is almost entirely based on a response to the protective antigen (PA), the binding moiety for the two other toxin components. We cloned the PA gene into an auxotrophic mutant of Salmonella enterica serovar Typhimurium as a fusion with the signal sequence of the hemolysin (Hly) A gene of Escherichia coli to allow the export of PA via the Hly export system. To stabilize the export cassette, it was also integrated into the chromosome of the live Salmonella carrier.
View Article and Find Full Text PDFBubonic and pneumonic plague are caused by the bacterium Yersinia pestis. The V antigen of Y. pestis is a protective antigen against plague.
View Article and Find Full Text PDFAttenuated strains of Salmonella enterica serovar Typhimurium are used as carriers of heterologous antigens as candidate oral vaccines and, more recently, as carriers of DNA vaccines. In this study, recombinant Salmonella strains that were altered in their ability to colonise murine tissues in vivo when compared to parent strains were not, however, equally altered in their ability to invade murine cells in vitro. These results suggest that in vitro invasion studies may not be a representative model for colonisation of tissues in vivo, and that in vitro studies should ideally be used in conjunction with in vivo studies for the assessment of potential Salmonella vaccines.
View Article and Find Full Text PDF