Background: Neurofibromatosis 1 and 2, although involving two different tumour suppressor genes (neurofibromin and merlin, respectively), are both cancer predisposition syndromes that disproportionately affect cells of neural crest origin. New therapeutic approaches for both NF1 and NF2 are badly needed. In promising previous work we demonstrated that two non-steroidal analogues of 2-methoxy-oestradiol (2ME2), STX3451(2-(3-bromo-4,5-dimethoxybenzyl)-7-methoxy-6-sulfamoyloxy-1,2,3,4-tetrahydroisoquinoline), and STX2895 (7-Ethyl-6-sulfamoyloxy-2-(3,4,5-trimethoxybenzyl)-1,2,3,4-tetrahydroisoquinoline) reduced tumour cell growth and induced apoptosis in malignant and benign human Neurofibromatosis 1 (NF1) tumour cells.
View Article and Find Full Text PDFThe earliest stages of neuronal and sensory cell development in vertebrate sensory organs depend on "inflammatory" immune system neurotrophic cytokines/chemokines. Although classical nerve growth factors, brain-derived neurotrophic factors and glial growth factors play critical roles at various stages, the earliest directive roles belong to immune system cytokines. In frogs, fishes, birds and mammals, macrophage migration inhibitory factor (MIF), monocyte chemoattractant protein 1 (MCP1) and RANTES, components of the otocyst-derived factor, are involved in sorting, morphogenesis, providing directional neuronal outgrowth cues as well as survival factors for both neurons and sensory cells.
View Article and Find Full Text PDFMacrophage migration inhibitory factor (MIF) is a neurotrophic cytokine essential for inner ear hair cell (HC) development and statoacoustic ganglion (SAG) neurite outgrowth, and SAG survival in mouse, chick and zebrafish. Another neurotrophic cytokine, Monocyte chemoattractant protein 1 (MCP1) is known to synergize with MIF; but MCP1 alone is insufficient to support mouse/chick SAG neurite outgrowth or neuronal survival. Because of the relatively short time over which the zebrafish inner ear develops (~30hpf), the living zebrafish embryo is an ideal system to examine mif and mcp1 cytokine pathways and interactions.
View Article and Find Full Text PDFJ Tissue Eng Regen Med
January 2018
New therapeutic approaches for repairing an injured or degenerating nervous system have accelerated the development of methods to generate populations of neurons derived from various stem cell sources efficiently. Many of these methods require the generation of neurospheres. Here a simple technique is described for creating an array of adherent mouse embryonic stem cell (mESC)-derived neurospheres using a conventional plastic culture dish and a patterning template.
View Article and Find Full Text PDFBackground: To send meaningful information to the brain, an inner ear cochlear implant (CI) must become closely coupled to as large and healthy a population of remaining spiral ganglion neurons (SGN) as possible. Inner ear gangliogenesis depends on macrophage migration inhibitory factor (MIF), a directionally attractant neurotrophic cytokine made by both Schwann and supporting cells (Bank et al., 2012).
View Article and Find Full Text PDFBackground: Both the number and size of tumours in NF1 patients increase in response to the rise in steroid hormones seen at puberty and during pregnancy. The size of tumours decreases after delivery, suggesting that hormone-targeting therapy might provide a viable new NF1 treatment approach. Our earlier studies demonstrated that human NF1 tumour cell lines either went through apoptosis or ceased growth in the presence of 2-methoxyoestradiol (2ME2), a naturally occurring anticancer metabolite of 17-β estradiol.
View Article and Find Full Text PDFMethods to detect immunolabeled molecules at increasingly higher resolutions, even when present at low levels, are revolutionizing immunohistochemistry (IHC). These technologies can be valuable for the management and examination of rare patient tissue specimens, and for improved accuracy of early disease detection. The purpose of this article is to highlight recent multiplexing methods that are candidates for more prevalent use in clinical research and potential translation to the clinic.
View Article and Find Full Text PDFBackground: Murine Zic genes (Zic1-5) are expressed in the dorsal hindbrain and in periotic mesenchyme (POM) adjacent to the developing inner ear. Zic genes are involved in developmental signaling pathways in many organ systems, including the ear, although their exact roles haven't been fully elucidated. This report examines the role of Zic1, Zic2, and Zic4 during inner ear development in mouse mutants in which these Zic genes are affected.
View Article and Find Full Text PDFAlzheimer's disease is accompanied by progressive, time-dependent changes of three moieties of amyloid beta. In vitro models therefore should provide same conditions for more physiologic studies. Here we observed changes in the number of fibrils over time and studied the correlation between amyloid beta moieties and neurotoxicity.
View Article and Find Full Text PDFBackground: Inner ear development involves signaling from surrounding tissues, including the adjacent hindbrain, periotic mesenchyme, and notochord. These signals include SHH, FGFs, BMPs, and WNTs from the hindbrain and SHH from the notochord. Zic genes, which are expressed in the dorsal neural tube and act during neural development, have been implicated as effectors of these pathways.
View Article and Find Full Text PDFThis study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system 'inflammatory' cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse.
View Article and Find Full Text PDFMacrophage migration inhibitory factor (MIF) plays versatile roles in the immune system. MIF is also widely expressed during embryonic development, particularly in the nervous system, although its roles in neural development are only beginning to be understood. Evidence from frogs, mice and zebrafish suggests that MIF has a major role as a neurotrophin in the early development of sensory systems, including the auditory system.
View Article and Find Full Text PDFIn recent years, electroporation has become a popular technique for in vivo transfection of DNA, RNA, and morpholinos into various tissues, including the eye, brain, and somites of zebrafish. The advantage of electroporation over other methods of genetic manipulation is that specific tissues can be targeted, both spatially and temporally, for the introduction of macromolecules by the application of electrical current. Here we describe the use of electroporation for transfecting mif and mif-like morpholinos into the tissues of the developing inner ear of the zebrafish.
View Article and Find Full Text PDFGeneration of stable soluble-factor gradients in microfluidic devices enables studies of various cellular events such as chemotaxis and differentiation. However, many gradient devices directly expose cells to constant fluid flow and that can induce undesired responses from cells due to shear stress and/or wash out of cell-secreted molecules. Although there have been devices with flow-free gradients, they typically generate only a single condition and/or have a decaying gradient profile that does not accommodate long-term experiments.
View Article and Find Full Text PDFCadherin-11/Cdh11 is expressed through early development and strongly during inner ear development (otic placode and vesicle). Here we show that antisense knockdown of Cdh11 during early zebrafish development interferes with otolith formation. Immunofluorescence labeling showed that Cdh11 expression was concentrated on and within the otolith.
View Article and Find Full Text PDFThe zebrafish is a valuable model for teaching developmental, molecular, and cell biology; aquatic sciences; comparative anatomy; physiology; and genetics. Here we demonstrate that zebrafish provide an excellent model system to teach engineering principles. A seven-member undergraduate team in a biomedical engineering class designed, built, and tested a zebrafish microfluidic bioreactor applying microfluidics, an emerging engineering technology, to study zebrafish development.
View Article and Find Full Text PDFThe Neurofibromatosis Type 1 (NF1) gene functions as a tumor suppressor gene. Loss of its protein, neurofibromin, in the autosomal dominant disorder NF1 is associated with peripheral nervous system tumors, particularly neurofibromas, benign lesions in which the major cell type is the Schwann Cell (SC). Benign and malignant human tumors found in NF1 patients are heterogeneous with respect to their cellular composition.
View Article and Find Full Text PDFThe inner ear is a complex organ containing sensory tissue, including hair cells, the development of which is not well understood. Our long-term goal is to discover genes critical for the correct formation and function of the inner ear and its sensory tissue. A novel gene, transmembrane inner ear (Tmie), was found to cause hearing-related disorders when defective in mice and humans.
View Article and Find Full Text PDFThe neuroectoderm arises during gastrulation as a population of undifferentiated proliferating neuroepithelial cells. As development continues, neuroepithelial cells leave the cell cycle and differentiate into neurons and glia of the functioning central nervous system. What processes establish the spatial distribution of proliferating neuroepithelial cells? To investigate this question, zic2a was isolated from zebrafish, a homolog of the Drosophila pair-rule gene odd-paired, which is involved in nervous system patterning.
View Article and Find Full Text PDFLoss of neurofibromin, the protein product of the tumor suppressor gene neurofibromatosis type 1 (NF1), is associated with neurofibromas, composed largely of Schwann cells. The number and size of neurofibromas in NF1 patients have been shown to increase during pregnancy. A mouse embryonic stem cell (mESC) model was used, in which mESCs with varying levels of neurofibromin were differentiated into Schwann-like cells.
View Article and Find Full Text PDFThe neurofibromatosis Type 1 (NF1) gene functions as a tumor suppressor gene. One known function of neurofibromin, the NF1 protein product, is to accelerate the slow intrinsic GTPase activity of Ras to increase the production of inactive rasGDP, with wide-ranging effects on p21ras pathways. Loss of neurofibromin in the autosomal dominant disorder NF1 is associated with tumors of the peripheral nervous system, particularly neurofibromas, benign lesions in which the major affected cell type is the Schwann cell (SC).
View Article and Find Full Text PDFThe formation of spherical aggregates of cells called embryoid bodies (EBs) is an indispensable step in many protocols in which embryonic stem (ES) cells are differentiated to other cell types. Appropriate morphology and embryo size are critical for the sequential developmental stages of naturally conceived embryos. Likewise, regulating the size of EBs and the timing of their formation is crucial for controlling the differentiation of ES cells within the EB.
View Article and Find Full Text PDFWe previously reported that cadherin-4 (also called R-cadherin) was expressed by the majority of the developing zebrafish cranial and lateral line ganglia. Cadherin-4 (Cdh4) function in the formation of these structures in zebrafish was studied using morpholino antisense technology. Differentiation of the cranial and lateral line ganglia and lateral line nerve and neuromasts of the cdh4 morphants was analyzed using multiple neural markers.
View Article and Find Full Text PDFBone Morphogenetic Protein 4 (BMP4) is a member of the TGF-beta superfamily and is known to be important for the normal development of many tissues and organs, including the inner ear. Bmp4 homozygous null mice die as embryos, but Bmp4 heterozygous null (Bmp4(+/-)) mice are viable and some adults exhibit a circling phenotype, suggestive of an inner ear defect. To understand the role of BMP4 in inner ear development and function, we have begun to study C57BL/6 Bmp4(+/-) mice.
View Article and Find Full Text PDFMolecular mechanisms that control inner ear morphogenesis from the placode to the three-dimensional functional organ are not well understood. We hypothesize that cell-cell adhesion, mediated by cadherin molecules, contributes significantly to various stages of inner ear formation. Cadherin-2 (Cdh2) function during otic vesicle morphogenesis was investigated by examining morpholino antisense oligonucleotide knockdown and glass onion (glo) (Cdh2 mutant) zebrafish embryos.
View Article and Find Full Text PDF