P450 and P450 are bacterial cytochromes P450 that specifically hydroxylate bicyclic monoterpenes. Protein-substrate H bonding has been previously proposed as crucial in the selectivity of P450 oxidations, but not as essential for P450 . To examine the difference in importance of H bonds in these two model P450s, the P450-catalysed oxidation products from thiocamphor were compared.
View Article and Find Full Text PDFCytochrome P450cin (P450cin) (CYP176A1) is a bacterial P450 enzyme that catalyses the enantiospecific hydroxylation of 1,8-cineole to (1R)-6β-hydroxycineole when reconstituted with its natural reduction-oxidation (redox) partner cindoxin, E. coli flavodoxin reductase, and NADPH as a source of electrons. This catalytic system has become a useful tool in the study of P450s as not only can large quantities of P450cin be prepared and rates of oxidation up to 1,500 min(-1) achieved, but it also displays a number of unusual characteristics.
View Article and Find Full Text PDFP450(cin) (CYP176A) is a rare bacterial P450 in that contains an asparagine (Asn242) instead of the conserved threonine that almost all other P450s possess that directs oxygen activation by the heme prosthetic group. However, P450(cin) does have the neighbouring, conserved acid (Asp241) that is thought to be involved indirectly in the protonation of the dioxygen and affect the lifetime of the ferric-peroxo species produced during oxygen activation. In this study, the P450(cin) D241N mutant has been produced and found to be analogous to the P450(cam) D251N mutant.
View Article and Find Full Text PDFA conserved threonine found in the majority of cytochromes P450 (P450s) has been implicated in the activation of dioxygen during the catalytic cycle. P450(cin) (CYP176A) has been found to be an exception to this paradigm, where the conserved threonine has been replaced with an asparagine. Prior studies with a P450(cin) N242A mutant established that the Asn-242 was not a functional replacement for the conserved threonine but was essential for the regio- and stereocontrol of the oxidation of cineole.
View Article and Find Full Text PDFCytochromes P450 (P450s) belong to a superfamily of haemoproteins that catalyse a remarkable variety of oxidative transformations. P450 catalysis generally requires that cognate redox proteins transfer electrons, derived ultimately from NAD(P)H, to the P450 for oxygen activation. P450(cin) (CYP176A1) is a bacterial P450 that is postulated to allow Citrobacter braakii to live on cineole as its sole carbon source by initiating cineole biodegradation.
View Article and Find Full Text PDFThe first steps in the biodegradation of 1,8-cineole involve the introduction of an alcohol and its subsequent oxidation to a ketone. In Citrobacter braakii, cytochrome P450(cin) has previously been demonstrated to perform the first oxidation to produce (1R)-6beta-hydroxycineole. In this study, we have cloned cinD from C.
View Article and Find Full Text PDFCytochrome P450cin (CYP176A1) is a bacterial P450 isolated from Citrobacter braakii that catalyzes the hydroxylation of cineole to (S)-6beta-hydroxycineole. This initiates the biodegradation of cineole, enabling C. braakii to live on cineole as its sole source of carbon and energy.
View Article and Find Full Text PDFChem Commun (Camb)
February 2003
Electrochemistry of bacterial cytochrome P450cin (CYP176A) reveals that, unusually, substrate binding does not affect the heme redox potential, although a marked pH dependence is consistent with a coupled single electron/single proton transfer reaction in the range 6 < pH < 10.
View Article and Find Full Text PDF