Adaptation allows organisms to maintain a constant internal environment, which is optimised for growth. The unfolded protein response (UPR) is an example of a feedback loop that maintains endoplasmic reticulum (ER) homeostasis, and is characteristic of how adaptation is often mediated by transcriptional networks. The more recent discovery of asymmetric division in maintaining ER homeostasis, however, is an example of how alternative non-transcriptional pathways can exist, but are overlooked by gold standard transcriptomic or proteomic population-based assays.
View Article and Find Full Text PDFAlthough recent advances in E. coli self-assembly have greatly simplified cloning, these have not yet been harnessed for the high-throughput generation of expression strains in the early research and discovery phases of biopharmaceutical production. Here, we have refined the technique and incorporated it into a streamlined workflow for the generation of Pichia pastoris expression strains, reducing the timeline by a third and removing the reliance on DNA editing enzymes, which often require troubleshooting and increase costs.
View Article and Find Full Text PDFDespite decades of clinical and commercial success, the current paradigm for drug discovery and development is still empirical and costly. The many hundreds of therapeutic proteins (TPs) in the development pipeline and the FDA-led quality-by-design initiative represent opportunities to address this issue. Advances in our understanding of cellular mechanisms as well as the physicochemical and biological characteristics of TPs have enabled researchers to develop computational models that analyse or even predict molecular and cellular behaviour under different conditions.
View Article and Find Full Text PDF