The current study introduces two novel, smart polymer three-dimensional (3D)-printable interpenetrating polymer network (IPN) hydrogel biomaterials with favorable chemical, mechanical, and morphological properties for potential applications in traumatic brain injury (TBI) such as potentially assisting in the restoration of neurological function through closure of the wound deficit and neural tissue regeneration. Additionally, removal of injury matter to allow for the appropriate scaffold grafting may assist in providing a TBI treatment. Furthermore, due to the 3D printability of the IPN biomaterials, complex structures can be designed and fabricated to mimic the native shape and structure of the injury sight, which can potentially assist with neural tissue regeneration after TBI.
View Article and Find Full Text PDFThe loss of tissues and organs through injury and disease has stimulated the development of therapeutics that have the potential to regenerate and replace the affected tissue. Such therapeutics have the benefit of reducing the reliance and demand for life-saving organ transplants. Of the several regenerative strategies, 3D printing has emerged as the forerunner in regenerative attempts due to the fact that biologically and anatomically correct 3D structures can be fabricated according to the specified need.
View Article and Find Full Text PDFNerve damage, which can be devastating, triggers several biological cascades, which result in the insufficiencies of the human nervous system to provide complete nerve repair and regain of function. Since no therapeutic strategy exists to provide immediate attention and intervention to patients with newly acquired nerve damage, we propose a strategy in which accelerated medical image processing through graphical processing unit implementation and three-dimensional printing are combined to produce a time-efficient, patient-specific (custom-neural-scaffold) solution to nerve damage. This work aims to beneficially shorten the time required for medical decision-making so that improved patient outcomes are achieved.
View Article and Find Full Text PDF