The present study investigated the effect of visual offset (visuo-proprioceptive mismatch) in joint repositioning task in a three-dimensional virtual reality (VR) environment when participants were instructed to ignore vision. Twenty-five physically healthy young individuals performed shoulder joint position sense test. Repositioning accuracy was tested under two visual conditions, accurate and offset visions, and two instructions, no guidance or ignore vision.
View Article and Find Full Text PDFWeighted integration of visual and proprioceptive information is important in movement planning and execution. The present study used a virtual reality system to determine how upper limb movement consistency and accuracy are altered when (a) vision of the limb is removed and (b) proprioception and vision of the limb are misaligned. A one degree of freedom upper limb movement task was performed under three visual conditions of the limb; accurate vision, no vision, and offset vision.
View Article and Find Full Text PDFCommercially-available Virtual Reality (VR) systems have the potential to be effective tools for simultaneous visual manipulation and kinematic data collection. Previously, these systems have been integrated with research-grade motion capture systems to provide both functionalities; however, they are yet to be used as stand-alone systems for kinematic data collection. The present study aimed to validate the HTC VIVE VR system for kinematic data collection by evaluating the accuracy of its position and orientation signals.
View Article and Find Full Text PDF