Polo-like kinase 1 (Plk1) is an essential protein kinase that promotes faithful mitotic progression in eukaryotes. The subcellular localization and substrate interactions of Plk1 are tightly controlled and require its binding to phosphorylated residues. To identify phosphorylation-dependent interactions within the Plk1 network in human mitotic cells, we performed quantitative proteomics on HeLa cells cultured with kinase inhibitors or expressing a Plk1 mutant that was deficient in phosphorylation-dependent substrate binding.
View Article and Find Full Text PDFProtein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry-based proteomics.
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) and tau have been identified as risk factors of Parkinson's disease (PD). As LRRK2 is a kinase and tau is hyperphosphorylated in some LRRK2 mutation carriers of PD patients, the obvious hypothesis is that tau could be a substrate of LRRK2. Previous reports that LRRK2 phosphorylates free tau or tubulin-associated tau provide direct support for this proposition.
View Article and Find Full Text PDF