There is a growing awareness that cells grown in 3D better model in vivo behavior than those grown in 2D. In this protocol, we describe a simple and tunable 3D hydrogel, suitable for culturing cells and tissue in a setting that matches their native environment. This is particularly important for researchers investigating the initiation, growth, and treatment of cancer where the interaction between cells and their local extracellular matrix is a fundamental part of the model.
View Article and Find Full Text PDFDifferentiation and subsequent specialization of every cell within an organism is an intricate interwoven process. A complex network of signalling pathways eventually leads to the specification of a multitude of different cell types able to function co-operatively. HS (heparan sulfate) is a highly sulfated linear polysaccharide that resides at the pericellular cell-matrix interface where it dictates the binding and activity of a large number of proteins, including growth factors and morphogens such as members of the FGF (fibroblast growth factor) and BMP (bone morphogenetic protein) families.
View Article and Find Full Text PDFAs our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface.
View Article and Find Full Text PDF