The serious drawback underlying the biological annotation of whole-genome sequence data is the p >> n problem, which means that the number of polymorphic variants (p) is much larger than the number of available phenotypic records (n). We propose a way to circumvent the problem by combining a LASSO logistic regression with deep learning to classify cows as susceptible or resistant to mastitis, based on single nucleotide polymorphism (SNP) genotypes. Among several architectures, the one with 204,642 SNPs was selected as the best.
View Article and Find Full Text PDFDespite the growing number of sequenced bovine genomes, the knowledge of the population-wide variation of sequences remains limited. In many studies, statistical methodology was not applied in order to relate findings in the sequenced samples to a population-wide level. Our goal was to assess the population-wide variation in DNA sequence based on whole-genome sequences of 32 Holstein-Friesian cows.
View Article and Find Full Text PDFBackground: One major problem in dairy cattle husbandry is the prevalence of udder infections. In today's breeding programmes, top priority is being given to making animal evaluation more cost-effective and reliable and less time-consuming. We proposed tumor necrosis factor α (TNF-α), lactoferrin (LTF) and macrophage-expressed lysozyme (mLYZ) genes as potential DNA markers in the improvement of immunity to mastitis.
View Article and Find Full Text PDF