Publications by authors named "Katarzyna Wȩgrzyn"

A cell membrane is an essential cellular component providing protection against the outer environment. It is also a host for proteins and carbohydrates responsible for, e.g.

View Article and Find Full Text PDF

Background: Hypertension worsens outcomes in SARS-CoV-2 patients. Sartans, a type of antihypertensive angiotensin receptor blocker-(ARB), reduce COVID-19 morbidity and mortality by targeting angiotensin-converting enzyme-2 (ACE2). This study aimed to evaluate the antiviral and antihypertensive effects of nirmatrelvir, commercial sartans (candesartan, losartan, and losartan carboxylic (Exp3174)), and newly synthesized sartans (benzimidazole-N-biphenyl carboxyl (ACC519C) and benzimidazole-N-biphenyl tetrazole (ACC519T)), compared to nirmatrelvir, the antiviral component of Paxlovid.

View Article and Find Full Text PDF
Article Synopsis
  • Monoclonal antibodies that target immune checkpoints are changing cancer treatment, but their effectiveness varies and can lead to unexpected issues like hyperprogression.
  • Current animal research models, especially mice, don’t accurately reflect the human immune system and patient differences, creating a need for better models.
  • This study introduces two new antibodies that effectively target canine PD-1, offering valuable tools for canine cancer research and potential new treatments for dogs with cancer.
View Article and Find Full Text PDF

The PD-1/PD-L1 complex belongs to the group of inhibitory immune checkpoints and plays a critical role in immune regulation. The PD-1/PD-L1 axis is also responsible for immune evasion of cancer cells, and this complex is one of the main targets of immunotherapies used in oncology. Treatment using immune checkpoint inhibitors is mainly based on antibodies.

View Article and Find Full Text PDF

Although the mechanism of DNA replication initiation has been investigated for over 50 years, many important discoveries have been made related to this process in recent years. In this mini-review, we discuss the current state of knowledge concerning the structure of the origin region in bacterial chromosomes and plasmids, recently discovered motifs recognized by replication initiator proteins, and proposed in the literature models describing initial origin opening. We review structures of nucleoprotein complexes formed by replication initiators at chromosomal and plasmid replication origins and discuss their functional implications.

View Article and Find Full Text PDF

Tailocins are nanomolecular machines with bactericidal activity. They are produced by bacteria to contribute to fitness in mixed communities, and hence, they play a critical role in their ecology in a variety of habitats. Here, we characterized the new tailocin produced by strain 3937, a well-characterized member of plant pathogenic Soft Rot (SRP).

View Article and Find Full Text PDF

For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA.

View Article and Find Full Text PDF

Immune checkpoints can be divided into co-stimulatory and co-inhibitory molecules that regulate the activation and effector functions of T cells. The co-inhibitory pathways mediated by ICPs are used by cancer cells to escape from immune surveillance, and therefore the blockade of these receptor/ligand interactions is one of the strategies used in the treatment of cancer. The two main pathways currently under investigation are CTLA-4/CD80/CD86 and PD-1/PD-L1, and the monoclonal Abs targeting them have shown potent immunomodulatory effects and activity in clinical environments.

View Article and Find Full Text PDF

In this work, we present studies on relatively new and still not well-explored potential anticancer targets which are shelterin proteins, in particular the TRF1 protein can be blocked by in silico designed "peptidomimetic" molecules. TRF1 interacts directly with the TIN2 protein, and this protein-protein interaction is crucial for the proper functioning of telomere, which could be blocked by our novel modified peptide molecules. Our chemotherapeutic approach is based on assumption that modulation of TRF1-TIN2 interaction may be more harmful for cancer cells as cancer telomeres are more fragile than in normal cells.

View Article and Find Full Text PDF

This study is an extension of current research into a novel class of synthetic antihypertensive drugs referred to as "bisartans", which are bis-alkylated imidazole derivatives bearing two symmetric anionic biphenyltetrazoles. Research to date indicates that bisartans are superior to commercially available hypertension drugs, since the former undergo stronger docking to angiotensin-converting enzyme 2 (ACE2). ACE2 is the key receptor involved in SARS-CoV-2 entry, thus initiating COVID-19 infection and in regulating levels of vasoactive peptides such as angiotensin II and beneficial heptapeptides A(1-7) and Alamandine in the renin-angiotensin system (RAS).

View Article and Find Full Text PDF

The present research shows the antitumor activity of a protein-polysaccharide complex Venetin-1 obtained from the coelomic fluid of Dendrobaena veneta earthworms against A549 cancer cells. The investigations are a continuation of experiments on the antitumor activity of coelomic fluid obtained from this species. The Venetin-1 nanoparticle was obtained after thermal treatment of the coelomic fluid, separation from coelomocytes, filtration, and lyophilization.

View Article and Find Full Text PDF

Over the past few years, many molecules such as monoclonal antibodies, affibodies, nanobodies, and small compounds have been designed and tested as inhibitors of PD-1/PD-L1 complex formation. Some of them have been successfully implemented into clinical oncology practice. However, the majority of these compounds have disadvantages and limitations, such as high production price, potential for immunogenicity and/or prolonged clearance.

View Article and Find Full Text PDF

Cancer immunotherapy using blockade of immune checkpoints is mainly based on monoclonal antibodies. Despite the tremendous success achieved by using those molecules to block immune checkpoint proteins, antibodies possess some weaknesses, which means that there is still a need to search for new compounds as alternatives to antibodies. Many current approaches are focused on use of peptides/peptidomimetics to destroy receptor/ligand interactions.

View Article and Find Full Text PDF

A new concept of easy to make, potentially disposable potentiometric sensors is presented. A thermoprocessable carbon black-loaded, electronically conducting, polylactide polymer composite was used to prepare substrate electrodes of user's defined shape/arrangement applying a 3D pen in a hot melt process. Covering of the carbon black-loaded polylactide 3D-drawn substrate electrode with a PVC-based ion-selective membrane cocktail results in spontaneous formation of a zip-lock structure with a large contact area.

View Article and Find Full Text PDF

Objective: The ability to form nucleoprotein complexes is a fundamental activity of DNA replication initiation proteins. They bind within or nearby the region of replication origin what results in melting of a double-stranded DNA (dsDNA) and formation of single-stranded DNA (ssDNA) region where the replication machinery can assemble. For prokaryotic initiators it was shown that they interact with the formed ssDNA and that this interaction is required for the replication activity.

View Article and Find Full Text PDF

We report for the first time on in situ transduction of electrochemical responses of ion-selective electrodes, operating under non-zero-current conditions, to emission change signals. The proposed novel-type PVC-based membrane comprises a dispersed redox and emission active ion-to-electron transducer. The electrochemical trigger applied induces a redox process of the transducer, inducing ion exchange between the membrane and the solution, resulting also in change of its emission spectrum.

View Article and Find Full Text PDF

The present study aimed to synthesize novel polycationic polymers composed of -substituted L-2,3-diaminopropionic acid residues (DAPEGs) and investigate their cell permeability, cytotoxicity, and DNA-binding ability. The most efficient cell membrane-penetrating compounds (O2Oc-Dap(GO2)-O2Oc-NH, where n = 4, 6, and 8) showed dsDNA binding with a binding constant in the micromolar range (0.3, 3.

View Article and Find Full Text PDF

An essential feature of replication initiation proteins is their ability to bind to DNA. In this work, we describe a new domain that contributes to a replication initiator sequence-specific interaction with DNA. Applying biochemical assays and structure prediction methods coupled with DNA-protein crosslinking, mass spectrometry, and construction and analysis of mutant proteins, we identified that the replication initiator of the broad host range plasmid RK2, in addition to two winged helix domains, contains a third DNA-binding domain.

View Article and Find Full Text PDF

This case demonstrates a recognized association between an acetabular injury pattern and underlying morphology of the hip. In the patient discussed, hyperflexion of the hip results in the engagement of the present CAM lesion, and the resulting subluxation leads to a fracture of the posterior wall and instability of the hip. This combination of pathologies was addressed with a surgical dislocation approach to address both the CAM lesion and fix the posterior wall.

View Article and Find Full Text PDF

Immune checkpoints are crucial in the maintenance of antitumor immune responses. The activation or blockade of immune checkpoints is dependent on the interactions between receptors and ligands; such interactions can provide inhibitory or stimulatory signals, including the enhancement or suppression of T-cell proliferation, differentiation, and/or cytokine secretion. B-and T-lymphocyte attenuator (BTLA) is a lymphoid-specific cell surface receptor which is present on T-cells and interacts with herpes virus entry mediator (HVEM), which is present on tumor cells.

View Article and Find Full Text PDF

The activity of type II toxin-antitoxin systems (TA), which are responsible for many important features of bacterial cells, is based on the differences between toxin and antitoxin stabilities. The antitoxin lability results from bacterial protease activity. Here, we investigated how particular Escherichia coli cytosolic proteases, namely, Lon, ClpAP, ClpXP, and ClpYQ, affect the stability of both the toxin and antitoxin components of the parDE system from the broad host range plasmid RK2.

View Article and Find Full Text PDF

Specific nucleoprotein complexes are formed strictly to prevent over-initiation of DNA replication. An example of those is the so-called handcuff complex, in which two plasmid molecules are coupled together with plasmid-encoded replication initiation protein (Rep). In this work, we elucidate the mechanism of the handcuff complex disruption.

View Article and Find Full Text PDF

Lon protease previously has been shown to interact with DNA, but the role of this interaction for Lon proteolytic activity has not been characterized. In this study, we used truncated Lon constructs, bioinformatics analysis, and site-directed mutagenesis to identify Lon domains and residues crucial for Lon binding with DNA and effects on Lon proteolytic activity. We found that deletion of Lon's ATPase domain abrogated interactions with DNA.

View Article and Find Full Text PDF

The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA.

View Article and Find Full Text PDF

Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin.

View Article and Find Full Text PDF