Publications by authors named "Katarzyna Szajko"

Despite their advantages, biotechnological and omic techniques have not been applied often to characterize phytotoxicity in depth. Here, we show the distribution of phytotoxicity and glycoalkaloid content in a diploid potato population and try to clarify the source of variability of phytotoxicity among plants whose leaf extracts have a high glycoalkaloid content against the test plant species, mustard. Six glycoalkaloids were recognized in the potato leaf extracts: solasonine, solamargine, α-solanine, α-chaconine, leptinine I, and leptine II.

View Article and Find Full Text PDF

Tuber-omics in potato with the T- and D-types of cytoplasm showed different sets of differentially expressed genes and proteins in response to cold storage. For the first time, we report differences in gene and protein expression in potato (Solanum tuberosum L.) tubers possessing the T- or D-type cytoplasm.

View Article and Find Full Text PDF

Background: Glycoalkaloids are bioactive compounds that contribute to the defence response of plants against herbivore attack and during pathogenesis. Solanaceous plants, including cultivated and wild potato species, are sources of steroidal glycoalkaloids. Solanum plants differ in the content and composition of glycoalkaloids in organs.

View Article and Find Full Text PDF

Tuber starch content (TSC) is a very important trait in potato (Solanum tuberosum L.). This study is the first to use expression quantitative trait loci (eQTL) mapping of transcript-derived markers for TSC in potato.

View Article and Find Full Text PDF

We report the first comparative study of protein expression profiles in tuber sprouts between Katahdin-derived potato cultivars resistant and susceptible to Synchytrium endobioticum. Synchytrium endobioticum causes wart disease in potato (Solanum tuberosum L.) and is considered as the most important quarantine pathogen in almost all countries where potatoes are grown.

View Article and Find Full Text PDF

The objective of this study was to map the quantitative trait loci (QTLs) for chip color after harvest (AH), cold storage (CS) and after reconditioning (RC) in diploid potato and compare them with QTLs for starch-corrected chip color. Chip color traits AH, CS, and RC significantly correlated with tuber starch content (TSC). To limit the effect of starch content, the chip color was corrected for TSC.

View Article and Find Full Text PDF

Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations.

View Article and Find Full Text PDF

Potato ( L.) tubers exhibit significant variation in reducing sugar content directly after harvest, cold storage and reconditioning. Here, we performed QTL analysis for chip color, which is strongly influenced by reducing sugar content, in a diploid potato mapping population.

View Article and Find Full Text PDF

Most QTL for leaf sucrose content map to positions that are similar to positions of QTL for tuber starch content in diploid potato. In the present study, using a diploid potato mapping population and Diversity Array Technology (DArT) markers, we identified twelve quantitative trait loci (QTL) for tuber starch content on seven potato chromosomes: I, II, III, VIII, X, XI, and XII. The most important QTL spanned a wide region of chromosome I (42.

View Article and Find Full Text PDF

Potato virus Y (PVY) is one of the most important viruses affecting potato () production. In this study, a novel hypersensitive response (HR) gene, -, conferring resistance to PVY was mapped on potato chromosome XI in cultivar Romula. In cultivars Albatros and Sekwana, the - gene was mapped on chromosome IX.

View Article and Find Full Text PDF

Cyanamide (CA) is a phytotoxic compound produced by four Fabaceae species: hairy vetch, bird vetch, purple vetch and black locust. Its toxicity is due to complex activity that involves the modification of both cellular structures and physiological processes. To date, CA has been investigated mainly in dicot plants.

View Article and Find Full Text PDF

The Ns gene confers resistance of potato to Potato virus S (PVS). Sixteen German and Dutch potato cultivars, all registered in Poland, were found to be susceptible to PVS infection. However, scoring of the cultivars for the presence of the Ns-linked SCAR marker SC811(454) revealed additional amplicons with a similar electrophoretic migration rate as that of SC811(454), which resulted in ambiguous determination of the genotype at the Ns locus.

View Article and Find Full Text PDF