Creosote oil, a byproduct of coal distillation, is primarily composed of aromatic compounds that are difficult to degrade, such as polycyclic aromatic hydrocarbons, phenolic compounds, and N-, S-, and O-heterocyclic compounds. Despite its toxicity and carcinogenicity, it is still often used to impregnate wood, which has a particularly negative impact on the condition of the soil in plants that impregnate wooden materials. Therefore, a rapid, effective, and eco-friendly technique for eliminating the creosote in this soil must be developed.
View Article and Find Full Text PDFSalty environments are widely known to be inhospitable to most microorganisms. For centuries salt has been used as a food preservative, while highly saline environments were considered uninhabited by organisms, and if habited, only by prokaryotic ones. Nowadays, we know that filamentous fungi are widespread in many saline habitats very often characterized also by other extremes, for example, very low or high temperature, lack of light, high pressure, or low water activity.
View Article and Find Full Text PDFChitin is one of the most abundant biopolymers. Due to its recalcitrant nature and insolubility in accessible solvents, it is often considered waste and not a bioresource. The products of chitin modification such as chitosan and chitooligosaccharides are highly sought, but their preparation is a challenging process, typically performed with thermochemical methods that lack specificities and generate hazardous waste.
View Article and Find Full Text PDFIn extreme environments, the relationships between species are often exclusive and based on complex mechanisms. This review aims to give an overview of the microbial ecology of saline soils, but in particular of what is known about the interaction between plants and their soil microbiome, and the mechanisms linked to higher resistance of some plants to harsh saline soil conditions. Agricultural soils affected by salinity is a matter of concern in many countries.
View Article and Find Full Text PDFRemoval of slop oil, a by-product of oil refining, also obtained in cleaning up of oil tanks and filters is a difficult issue. High content of hydrocarbons (C3-C40) and other organic compounds makes this waste difficult to eliminate from the environment. The purpose of this investigation was to combine bacterial degradation by endophytic Bacillus cereus EN18 with biotransformation performed using lipase enzyme preparation (Palatase®) to remove recalcitrant compounds present in slop oil from the environment.
View Article and Find Full Text PDFChitin and its N-deacetylated derivative chitosan are two biological polymers that have found numerous applications in recent years, but their further deployment suffers from limitations in obtaining a defined structure of the polymers using traditional conversion methods. The disadvantages of the currently used industrial methods of chitosan manufacturing and the increasing demand for a broad range of novel chitosan oligosaccharides (COS) with a fully defined architecture increase interest in chitin and chitosan-modifying enzymes. Enzymes such as chitinases, chitosanases, chitin deacetylases, and recently discovered lytic polysaccharide monooxygenases had attracted considerable interest in recent years.
View Article and Find Full Text PDFThe goal of this study was to increase the cost-effectiveness of oil production by an oleaginous and lipolytic strain M. circinelloides IBT-83, by optimizing both lipids accumulation in the mycelium containing intracellular lipases, and a one-step process coupling lipids extraction and enzymatic trans/esterification. In optimal conditions (culture medium composed of corn steep solids, plant oil, glucose and NO) over 50g/dm of biomass containing over 60% of lipids was produced.
View Article and Find Full Text PDFPrep Biochem Biotechnol
October 2017
Mucor circinelloides IBT-83 mycelium that exhibits both lipolytic (A) and chitosanolytic (A) activities was immobilized into polyurethane foam in a 30 L laboratory fermenter. The process of immobilization was investigated in terms of the carrier porosity, its type, amount, and shape, location inside the fermenter, mixing, and aeration parameters during the culture, as well as downstream processing operations. The selected conditions allowed for immobilization of approximately 7 g of defatted and dried mycelium in 1 g of carrier, i.
View Article and Find Full Text PDF