Publications by authors named "Katarzyna Smolinska-Kempisty"

The quantity and variety of micro-pollutants infiltrating water resources have increased rapidly in recent times. The appearance of many harmful substances in the waters has resulted in so-called chemical cocktails which significantly contribute to the deterioration of water quality. Additionally, the variety of these compounds, often similar to each other in terms of molecular weights, makes their separation and identification very difficult.

View Article and Find Full Text PDF

A new molecularly imprinted polymer (MIP) sensitive and selective for S-metolachlor herbicide was synthesized by bulk polymerization with the use of N-isopropylacrylamide, acrylamide, and acrylic acid as functional monomers, and N,N'- methylenebis(acrylamide) as a cross-linker. A novel method for obtaining MIP toward S-metolachlor in an aqueous medium and at room temperature, according to the principles of green chemistry, has been discovered, in comparison to synthesis methods at high temperatures and using organic solvents. Under selected experimental conditions, the batch mode type of sorption was carried out efficiently, with S-metolachlor absorption of 2.

View Article and Find Full Text PDF

In this study, polypropylene porous membranes with an average pore size of 1.25 µm were modified by barrier discharge plasma. Next, molecularly imprinted layers with an imprint of diethyl phthalate (DEP) ware grafted of their surface.

View Article and Find Full Text PDF

Membrane technologies have found a significant application in separation processes in an exceeding range of industrial fields. The crucial part that is decided regarding the efficiency and effectivity of separation is the type of membrane. The membranes deal with separation problems, working under the various mechanisms of transportation of selected species.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, is over-expressed in many tumors, including almost half of triple-negative breast cancers. The latter belong to a very-aggressive and drug-resistant form of malignancy. Although humanized anti-EGFR antibodies can work efficiently against these cancers both as monotherapy and in combination with genotoxic drugs, instability and high production costs are some of their known drawbacks in clinical use.

View Article and Find Full Text PDF

The enzyme-linked immunosorbent assay (ELISA) has been used as a standard tool for monitoring food and animal feed contamination from the carcinogenic fumonisin B1 (FB1). Unfortunately, ELISA is not always efficient due to the instability of the antibody and enzyme components in the immunoassay, the presence of natural enzyme inhibitors in the samples and the high levels of non-specific protein binding. Additionally, the production of antibodies for ELISA can be time-consuming and costly, due to the involvement of animals in the manufacturing process.

View Article and Find Full Text PDF

Herein we describe the preparation of molecularly imprinted silica nanoparticles by Ostwald ripening in the presence of molecular templates immobilised on glass beads (the solid-phase). To achieve this, a seed material (12 nm diameter silica nanoparticles) was incubated in phosphate buffer in the presence of the solid-phase. Phosphate ions act as a catalyst in the ripening process which is driven by differences in surface energy between particles of different size, leading to the preferential growth of larger particles.

View Article and Find Full Text PDF

The enzyme-linked immunosorbent assay (ELISA) is a widely employed analytical test used to quantify a given molecule. It relies on the use of specific antibodies, linked to an enzyme, to target the desired molecule. The reaction between the enzyme and its substrate gives rise to the analytical signal that can be quantified.

View Article and Find Full Text PDF

Here we show that molecularly imprinted polymer nanoparticles, prepared in aqueous media by solid phase synthesis with immobilised L-thyroxine, glucosamine, fumonisin B2 or biotin as template, can demonstrate comparable or better performance to commercially produced antibodies in enzyme-linked competitive assays. Imprinted nanoparticles-based assays showed detection limits in the pM range and polymer-coated microplates are stable to storage at room temperature for at least 1 month. No response to analyte was detected in control experiments with nanoparticles imprinted with an unrelated template (trypsin) but prepared with the same polymer composition.

View Article and Find Full Text PDF