Multifunctional molecules responsive to light are highly desired as components for the construction of remotely controlled nanodevices. Here we present a Dy single molecule magnet (SMM) comprising dithienylethene (dte) photochromic bridging ligands in the form of a pyridine (py) derivative: 1,2-bis((2-methyl-5-pyridyl)thie-3-yl)perfluorocyclo-pentene (dtepy). The title trinuclear compound {[Dy(BHT)](dtepy)}·4CH (1) was synthesized by combining the low-coordinate dysprosium complexes Dy(BHT) (BHT = 2,6-di--butyl-4-methylphenolate) with dtepy bridging ligands in the 'open' form using -pentane as a completely inert solvent.
View Article and Find Full Text PDFThe structures and magnetic properties of photoresponsive magnets can be controlled or fine-tuned by visible light irradiation, which makes them appealing as candidates for ternary memory devices: photochromic and photomagnetic at the same time. One of the strategies for photoresponsive magnetic systems is the use of photochromic/photoswitchable molecules coordinated to paramagnetic metal centers to indirectly influence their magnetic properties. Herein, we present two erbium(III)-based coordination systems: a trinuclear molecule {[Er(BHT)](dtepy)}4CH () and a 1D coordination chain {[Er(BHT)(azopy)}·2CH (), where the bridging photochromic ligands belong to the class of diarylethenes: 1,2-bis((2-methyl-5-pyridyl)thie-3-yl)perfluorocyclopentene (dtepy) and 4,4'-azopyridine (azopy), respectively (BHT = 2,6-di--butyl-4-methylphenolate).
View Article and Find Full Text PDF