Publications by authors named "Katarzyna Ranoszek-Soliwoda"

This manuscript presents a comprehensive study on the quantification of modifier molecules adsorbed on gold nanoparticles (AuNPs) using two complementary techniques Ellman's method (UV-vis spectroscopy) and isothermal titration calorimetry (ITC). In this paper, we compare the feasibility of using the ITC technique and Ellman's method to study the interactions of mercaptosulfonate compounds (sodium mercaptoethanesulfonate, MES, and sodium mercaptoundecanesulfonate, MUS) with the surface of AuNPs of various sizes. The thermodynamic functions of the attachment of mercaptosulfonates to AuNPs were determined, revealing a linear relationship between the number of adsorbed molecules and the surface area of the nanoparticles.

View Article and Find Full Text PDF

(1) Background: Epigallocatechin gallate (EGCG) has been recognized as a flavonoid showing antiviral activity against various types of DNA and RNA viruses. In this work, we tested if EGCG-modified silver nanoparticles (EGCG-AgNPs) can become novel microbicides with additional adjuvant properties to treat herpes infections. (2) Methods: The anti-HSV and cytotoxic activities of EGCG-AgNPs were tested in human HaCaT and VK-2-E6/E7 keratinocytes.

View Article and Find Full Text PDF

The described research aimed to develop the properties of the conductive composite /poly(3,4-ethylenedioxy-thiophene-poly(4-lithium styrenesulfonic acid)/chitosan-AuNPs-glutaraldehyde/ (/PEDOT-PSSLi/chit-AuNPs-GA/) and to develop an electrochemical enzyme sensor based on this composite material and glassy carbon electrodes (GCEs). The composite was created via electrochemical production of an /EDOT-PSSLi/ layer on a glassy carbon electrode (GCE). This layer was covered with a glutaraldehyde cross-linked chitosan and doped with AuNPs.

View Article and Find Full Text PDF

Neuroinfections caused by herpesviruses, mainly by HHV-1, represent a significant problem for modern medicine due to the small number of therapeutic substances available in the pharmaceutical sector. Furthermore, HHV-1 infection has been linked to neurodegenerative processes such as Alzheimer's disease, which justifies the search for new effective therapies. The development of nanotechnology opens up new possibilities for the treatment of neuroinflammation.

View Article and Find Full Text PDF

The present paper describes the effect of the concentration of two graphene oxides (with different oxygen content) in the modifier layer on the electrochemical and structural properties of noble metal disk electrodes used as working electrodes in voltammetry. The chemistry of graphene oxides was tested using EDS, FTIR, UV-Vis spectroscopy, and combustion analysis. The structural properties of the obtained modifier layers were examined by means of scanning electron and atomic force microscopy.

View Article and Find Full Text PDF

Metallic nanoparticles exhibit broad-spectrum activity against bacteria, fungi, and viruses. The antiviral activity of nanoparticles results from the multivalent interactions of nanoparticles with viral surface components, which result from the nanometer size of the material and the presence of functional compounds adsorbed on the nanomaterial surface. A critical step in the virus infection process is docking and entry of the virus into the host cell.

View Article and Find Full Text PDF

Lactoferrin is an iron-binding glycoprotein with multiple functions in the body. Its activity against a broad spectrum of both DNA and RNA viruses as well as the ability to modulate immune responses have made it of interest in the pharmaceutical and food industries. The mechanisms of its antiviral activity include direct binding to the viruses or its receptors or the upregulation of antiviral responses by the immune system.

View Article and Find Full Text PDF

At this time, the development of advanced elastic dielectric materials for use in organic devices, particularly in organic field-effect transistors, is of considerable interest to the scientific community. In the present work, flexible poly(dimethylsiloxane) (PDMS) specimens cross-linked by means of ZnCl-bipyridine coordination with an addition of 0.001 wt.

View Article and Find Full Text PDF

The clinical performance of a dental restoration is strongly influenced by the complex and dynamically-changing oral environment; however, no standard procedure exists to evaluate this lifetime. This research provides an in-depth analysis of the effect of different aging procedures on the flexural strength (FS), diametral tensile strength (DTS) and hardness (HV) of selected dental materials (Resin F, Flow-Art and Arkon). Material structure was evaluated by scanning electron microscopy.

View Article and Find Full Text PDF

The aim of the study was to investigate in vivo whether the application of immobilized superoxide dismutase (SOD) and catalase (CAT) could enhance DNA repairing systems and reduce level of CPD (cyclobutane pyrimidine dimers) and 6-4PP ((6-4) pyrimidine-pyrimidone photoproducts), and whether the immobilization on gold (AuNPs) and silver (AgNPs) nanoparticles affects the outcome. The study presents secondary analysis of our previous research. Three-day application of SOD and CAT in all forms of solution decreased the levels of CPD and 6-4PP boosted by UV irradiation.

View Article and Find Full Text PDF

New functionalization methods of - and -aramid fabrics with silver nanowires (AgNWs) and two silanes (3-aminopropyltriethoxysilane (APTES)) and diethoxydimethylsilane (DEDMS) were developed: a one-step method (mixture) with AgNWs dispersed in the silane mixture and a two-step method (layer-by-layer) in which the silanes mixture was applied to the previously deposited AgNWs layer. The fabrics were pre-treated in a low-pressure air radio frequency (RF) plasma and subsequently coated with polydopamine. The modified fabrics acquired hydrophobic properties (contact angle Θ of 112-125°).

View Article and Find Full Text PDF

(1) Background: Lactoferrin has been recognized as a potent inhibitor of human herpetic viruses, such as herpes simplex type 1 (HSV-1) and 2 (HSV-2). In this work, we tested if silver and gold nanoparticles modified with lactoferrin (LF-Ag/AuNPs) can become novel microbicides with additional adjuvant properties to treat genital herpes infection. (2) Methods: The antiviral and cytotoxic activities of LF-Ag/AuNPs were tested in human skin HaCaT and vaginal VK-2-E6/E7 keratinocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Silver nanowires (AgNWs) are promising for thermal management in wearable textiles due to their high infrared reflectance, but their practical use is hindered by poor stability in air and liquids.
  • This report introduces a new one-step passivation technique using a SnO layer that significantly improves AgNWs' environmental stability while maintaining their infrared reflectance.
  • The resulting Ag/SnONWs show enhanced durability against air decomposition and liquid dissolution, making them suitable for long-term applications in various textiles.
View Article and Find Full Text PDF

Background: Free-living amoebae of the genus Acanthamoeba are cosmopolitan, widely distributed protozoans that cause a severe, vision-threatening corneal infection known as Acanthamoeba keratitis (AK). The majority of the increasing number of AK cases are associated with contact lens use. Appropriate eye hygiene and effective contact lens disinfection are crucial in the prevention of AK because of the lack of effective therapies against it.

View Article and Find Full Text PDF

This study describes a new method for passivating Ag nanoparticles (AgNPs) with SnO layer and their further treatment by microwave irradiation. The one-step process of SnO layer formation was carried out by adding sodium stannate to the boiling aqueous AgNPs solution, which resulted in the formation of core@shell Ag@SnO nanoparticles. The coating formation was a tunable process, making it possible to obtain an SnO layer thickness in the range from 2 to 13 nm.

View Article and Find Full Text PDF

Background: Polyphenols possess antioxidant, anti-inflammatory and antimicrobial properties and have been used in the treatment of skin wounds and burns. We previously showed that tannic acid-modified AgNPs sized >26 nm promote wound healing, while tannic acid-modified AgNPs sized 13 nm can elicit strong local inflammatory response. In this study, we tested bimetallic Au@AgNPs sized 30 nm modified with selected flavonoid and non-flavonoid compounds for wound healing applications.

View Article and Find Full Text PDF

The aim of this study was to assess whether silver nanoparticles (AgNP) or selected cosmetic ingredients may modify functions of various immunocompetent cell populations. To this end, the effect of two AgNP (size of 15 nm or 45 nm), alone and in combination with aluminium chloride, butyl paraben, di-n-butyl phthalate or diethyl phthalate was assessed on: (1) migration and invasion of MDA-MB-231 human breast cancer cells; (2) M1/M2 polarization of phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophages (M0) and (3) activation/maturation of monocyte-derived dendritic cells (DCs). The results of this study showed that neither any of the test chemicals alone nor the mixtures significantly changed the migration or invasion ability of MDA-MB-231 cells following, both 72-h and 21-day exposure.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) and catalase (CAT) immobilized on gold nanoparticles (AuNP) and silver nanoparticles (AgNP) nanoparticles were used to reduce UV radiation-induced oxidative stress in rat skin. The antioxidant influence of the enzymes was investigated on level of malondialdehyde, 8-hydroksy-2'deoksyguanozine, myeloperoxidase, total antioxidant capacity, SOD2 and CAT activity and expression, and glutathione and glutathione peroxidase activity. The application of immobilized SOD and CAT on UV-irradiated skin reduced malondialdehyde and 8-hydroksy-2'deoksyguanozine levels also SOD and CAT activity and expression increased.

View Article and Find Full Text PDF

Plant extracts are known for their antihyperglycemic, antioxidant, antimutagenic, antifungal, anti-inflammatory, antiviral and antibacterial properties. These biological properties make plant extracts interesting surface modifiers of nanoparticles (NPs), which are also known for their unique features. Plant extracts can play a multifunctional role in the synthesis of NPs (i.

View Article and Find Full Text PDF

Superoxide dismutase (SOD) is one of the best characterized enzyme maintaining the redox state in the cell. A bacterial expression system was used to produce human recombinant manganese SOD with a His-tag on the C-end of the protein for better purification. In addition, gold and silver nanoparticles were chemically synthesized in a variety of sizes, and then mixed with the enzyme for immobilization.

View Article and Find Full Text PDF

(1) Background: Tannic acid is a plant-derived polyphenol showing antiviral activity mainly because of an interference with the viral adsorption. In this work, we tested whether the modification of silver nanoparticles with tannic acid (TA-AgNPs) can provide a microbicide with additional adjuvant properties to treat genital herpes infection. (2) Methods: The mouse model of the vaginal herpes simplex virus 2 (HSV-2) infection was used to test immune responses after treatment of the primary infection with TA-AgNPs, and later, after a re-challenge with the virus.

View Article and Find Full Text PDF

In this study, we present a comparison of the antioxidant activity of catalase immobilized on gold nanoparticles (AuNPs) by two methods: i) directly on the surface of AuNPs (non-specific immobilization), and ii) via chemical bonding using a linker (specific immobilization). Quantification of the enzyme amount adsorbed on the nanoparticle surface was determined by native-polyacrylamide gel electrophoresis (native-PAGE). Colloidal stability of AuNPs before and after the enzyme immobilization was monitored with dynamic light scattering (DLS) and UV-vis spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Silver nanoparticles (AgNPs) show potential as new antimicrobial agents, particularly against skin and mucosal pathogens like HSV-2, but their interaction with the immune system, especially dendritic cells (DCs), needs further investigation.
  • In experiments with modified silver (TA-AgNPs) and gold nanoparticles (TA-AuNPs), both types were taken up by DCs, stimulating their maturation and enhancing activation markers despite varying levels of toxicity; TA-AgNPs were found to be more effective in certain immune responses.
  • The study highlighted how TA-Ag/AuNPs combined with HSV-2 antigens could counter the virus's inhibitory effects on DC maturation, leading to improved T cell activation,
View Article and Find Full Text PDF

Introduction: Silver nanoparticles (AgNPs) have been shown to promote wound healing and to exhibit antimicrobial properties against a broad range of bacteria. In our previous study, we prepared tannic acid (TA)-modified AgNPs showing a good toxicological profile and immunomodulatory properties useful for potential dermal applications.

Methods: In this study, in vitro scratch assay, antimicrobial tests, modified lymph node assay as well as a mouse splint wound model were used to access the wound healing potential of TA-modified and unmodified AgNPs.

View Article and Find Full Text PDF

Human catalase cDNA was cloned into a pEX-C-His vector. Purified recombinant catalase was immobilized on nanoparticles. Gold and silver nanoparticles were synthesized in a variety of sizes by chemical reduction; no agglomerates or aggregates were observed in any of the colloids during dynamic light scattering or scanning transmission electron microscopy analysis.

View Article and Find Full Text PDF