To divide in a tissue, both normal and cancer cells become spherical and mechanically stiffen as they enter mitosis. We investigated the effect of oncogene activation on this process in normal epithelial cells. We found that short-term induction of oncogenic Ras activates downstream mitogen-activated protein kinase (MEK-ERK) signaling to alter cell mechanics and enhance mitotic rounding, so that Ras-expressing cells are softer in interphase but stiffen more upon entry into mitosis.
View Article and Find Full Text PDFMetastasis is complex, involving multiple genetic, epigenetic, biochemical, and physical changes in the cancer cell and its microenvironment. Cells with metastatic potential are often characterized by altered cellular contractility and deformability, lending them the flexibility to disseminate and navigate through different microenvironments. We demonstrate that mechanoresponsiveness is a hallmark of pancreatic cancer cells.
View Article and Find Full Text PDFThe throughput of cell mechanical characterization has recently approached that of conventional flow cytometers. However, this very sensitive, label-free approach still lacks the specificity of molecular markers. Here we developed an approach that combines real-time 1D-imaging fluorescence and deformability cytometry in one instrument (RT-FDC), thus opening many new research avenues.
View Article and Find Full Text PDFReal-time deformability cytometry (RT-DC) is a microfluidic technique that allows to capture and evaluate morphology and rheology of up to 1000 cells/s in a constricted channel. The cells are deformed without mechanical contact by hydrodynamic forces and are quantified in real-time without the need of additional handling or staining procedures. Segmented pictures of the cells are stored and can be used for further analysis.
View Article and Find Full Text PDFBackground: The small G-protein Rap1 is an important regulator of cellular adhesion in Dictyostelium, however so far the downstream signalling pathways for cell adhesion are not completely characterized. In mammalian cells talin is crucial for adhesion and Rap1 was shown to be a key regulator of talin signalling.
Results: In a proteomic screen we identified TalinB as a potential Rap1 effector in Dictyostelium.
Cytokinesis is the final step of mitosis when a mother cell is separated into two daughter cells. Major cytoskeletal changes are essential for cytokinesis; it is, however, not well understood how the microtubules and actomyosin cytoskeleton are exactly regulated in time and space. In this paper, we show that during the early stages of cytokinesis, in rounded-up Dictyostelium discoideum cells, the small G-protein Rap1 is activated uniformly at the cell cortex.
View Article and Find Full Text PDFBackground: Rap proteins belong to the Ras family of small G-proteins. Dictyostelium RapA is essential and implicated in processes throughout the life cycle. In early development and chemotaxis competent cells RapA induces pseudopod formation by activating PI3K and it regulates substrate attachment and myosin disassembly via the serine/threonine kinase Phg2.
View Article and Find Full Text PDFHow independent signaling pathways are integrated to holistically control a biological process is not well understood. We have identified Daydreamer (DydA), a new member of the Mig10/RIAM/lamellipodin (MRL) family of adaptor proteins that localizes to the leading edge of the cell. DydA is a putative Ras effector that is required for cell polarization and directional movement during chemotaxis.
View Article and Find Full Text PDFGbpC is a multidomain Roco protein in Dictyostelium, involved in transduction of intracellular cGMP that is produced by chemotactic signals. We have shown previously that cGMP binding to GbpC induces an intramolecular signaling cascade by activating subsequently the GEF, Ras, and kinase domains. In this study, we report on the cellular localization of GbpC.
View Article and Find Full Text PDFBreast cancer is the most commonly diagnosed cancer in women. Despite recent advances in breast cancer research, a comprehensive set of genetic markers of increased breast cancer risk remain elusive. Recently mitochondrial DNA (mtDNA) mutations have been found in many types of cancer, including breast cancer.
View Article and Find Full Text PDFEndometrial carcinoma is the most commonly diagnosed gynaecological cancer in developed countries. Although the molecular genetics of this disease has been in the focus of many research laboratories for the last 20 years, relevant prognostic and diagnostic markers are still missing. At the same time mitochondrial DNA mutations have been reported in many types of cancer during the last two decades.
View Article and Find Full Text PDFMitochondria have been implicated in cell transformation since Otto Warburg considered 'respiration damage' to be a pivotal feature of cancer cells. Numerous somatic mitochondrial DNA (mtDNA) mutations have been found in various types of neoplasms, including breast cancer. Establishing the mtDNA mutation pattern in breast cancer cells may enhance the specificity of cancer diagnostics, detection and prediction of cancer growth rate and/or patients' outcomes; and therefore be used as a new molecular cancer bio-marker.
View Article and Find Full Text PDFRecently published papers report a large number of mitochondrial DNA mutations in many different cancer types, but their significance for electron transport chain proteins remains unknown. This review covers structural mutations of mitochondrial genes, choosing prostate cancer, esophageal cancer and epithelioma as research models. As all mitochondrial genes encode subunits of the electron transport chain, the review focuses on the consequences of structural mutations on cell metabolism.
View Article and Find Full Text PDFGbpC is a large multidomain protein involved in cGMP-mediated chemotaxis in the cellular slime mold Dictyostelium discoideum. GbpC belongs to the Roco family of proteins that often share a central core region, consisting of leucine-rich repeats, a Ras domain (Roc), a Cor domain, and a MAPKKKinase domain. In addition to this core, GbpC contains a RasGEF domain and two cGMP-binding domains.
View Article and Find Full Text PDF