The perfluoalkyl substance (PFASs) perfluorooctane sulfonate (PFOS) has been widely used in industry. However, PFOS is a persistent organic pollutant and has been gradually replaced by its short-chain analogs, perfluorohexane sulfonate (PFHxS) and perfluorobutane sulfonate (PFBS). PFASs are extremely persistent and are very frequently detected among the general population.
View Article and Find Full Text PDFGlyphosate in the concentrations corresponding to environmental or occupational exposure has been shown to induce epigenetic changes potentially involved in carcinogenesis. This substance (1) changes the global methylation in various cell types and organisms and is responsible for the methylation of different promoters of individual genes, such as TP53 and P21 in human PBMCs, (2) decreases H3K27me3 methylation and H3 acetylation and increases H3K9 methylation and H4 acetylation in rats, (3) increases the expression of P16, P21, CCND1 in human PBMCs, and the expression of EGR1, JUN, FOS, and MYC in HEK293 cells, but decreases TP53 expression in human PBMCs, (4) changes the expression of genes DNMT1, HDAC3, TET1, TET2, TET3 involved in chromatin architecture, e.g.
View Article and Find Full Text PDFBenzo[]pyrene (B[]P) is the main representative of polycyclic aromatic hydrocarbons (PAHs), and has been repeatedly found in the air, surface water, soil, and sediments. It is present in cigarette smoke as well as in food products, especially when smoked and grilled. Human exposure to B[]P is therefore common.
View Article and Find Full Text PDFBromophenolic flame retardants (BFRs) are a large group of synthetic substances used in the industry in order to reduce the flammability of synthetic materials used in electrical and electronic devices, textiles, furniture and other everyday products. The presence of BFRs has been documented in the environment, food, drinking water, inhaled dust and the human body. Due to the widespread exposure of the general population to BFRs and insufficient knowledge on their toxic action, including genotoxic potential, we have compared the effect of tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), 2,4,6,-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) on DNA damage in human peripheral blood mononuclear cells (PBMCs) (playing a crucial role in the immune system) as well as examined underlying mechanism of action of these substances.
View Article and Find Full Text PDFEndocrine disruptors are a group of chemical compounds that, even in low concentrations, cause a hormonal imbalance in the body, contributing to the development of various harmful health disorders. Many industry compounds, due to their important commercial value and numerous applications, are produced on a global scale, while the mechanism of their endocrine action has not been fully understood. In recent years, per- and polyfluoroalkyl substances (PFASs) have gained the interest of major international health organizations, and thus more and more studies have been aimed to explain the toxicity of these compounds.
View Article and Find Full Text PDFThe human genome is persistently exposed to damage caused by xenobiotics, therefore the assessment of genotoxicity of substances having a direct contact with humans is of importance. Phthalates are commonly used in industrial applications. Widespread exposure to phthalates has been evidenced by their presence in human body fluids.
View Article and Find Full Text PDFAminomethylphosphonic acid (AMPA) is a primary metabolite of glyphosate and amino-polyphosphonate. We have determined the effect of AMPA on selected epigenetic parameters and major cell cycle drivers in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with AMPA at 0.
View Article and Find Full Text PDFPhosphorus flame retardants are a group of chemicals that are used to slow or prevent the spread of fire. These compounds have been detected in different environments including human organism. In the present study, we have investigated DNA-damaging potential and effect on DNA methylation of tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCPP) in human peripheral blood mononuclear cells (PBMCs).
View Article and Find Full Text PDFPhenol and chlorinated phenols are widely spread in the environment and human surrounding, which leads to a common environmental and occupational exposure of humans to these substances. The aim of this study was to assess eryptotic changes in human red blood cells treated with phenol, 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The erythrocytes were incubated with phenols studied in the concentrations ranging from 1 to 100 μg/mL for 24 h or 48 h.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
August 2018
Numerous research works have shown that synthesis of pesticides leads to the formation of impurities that may substantially enhance pesticide toxicity. In this study, the effect of manufacturing impurities of pesticide bromfenvinphos (BFVF) such as 1-bromo-2-(2,4-dichlorophenyl)-2-ethoxy ethene (BDCEE) and diethyl [2-(2,4-dichlorophenyl)-2-oxo-ethyl] phosphonate (β-ketophosphonate) on human erythrocytes, being significantly exposed to xenobiotics has been studied. The cells were treated with the compounds studied in the concentrations ranging from 0.
View Article and Find Full Text PDFBecause bisphenol A (BPA) and some of its analogs have been supposed to influence development of cancer, we have assessed the effect of BPA, bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF) on DNA bases oxidation, which is a key process in cancer initiation. The analysis was conducted on human peripheral blood mononuclear cells (PBMCs), which are very useful model to assess genotoxic potential of various toxicants in different cell types. In order to determine oxidative damage to DNA pyrimidines and purines, alkaline version of the comet assay with DNA glycosylases, i.
View Article and Find Full Text PDFIn the present study, we have investigated DNA-damaging potential of BPA and its analogs, i.e. bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF) in human peripheral blood mononuclear cells (PBMCs) using the alkaline and neutral versions of the comet assay, which allowed to evaluate DNA single strand-breaks (SSBs) and double strand-breaks (DSBs).
View Article and Find Full Text PDFThere are only a few studies that have assessed the effect of bisphenol A (BPA) on human blood cells and no study has been conducted to analyze the impact of BPA analogs on human leucocytes. In this study, we have investigated the effect of BPA and its analogs like bisphenol F (BPF), bisphenol S (BPS) and bisphenol AF (BPAF) on apoptosis induction in human peripheral blood mononuclear cells (PBMCs). In order to clarify the mechanism of bisphenols-induced programmed cell death, changes in various signaling molecules of this process have been assessed.
View Article and Find Full Text PDFIn this study, the effect of monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA) on human peripheral blood mononuclear cells (PBMCs) was assessed. HAAs studied induced at millimolar concentrations necrotic alterations in PBMCs with the strongest effect noted for MBAA and DBAA. Chloro- and bromoacetic acids also provoked changes in PBMCs morphology because they caused a strong decrease in cell size (particularly DCAA and DBAA) and increase in cell granulation (mainly MBAA and DBAA).
View Article and Find Full Text PDFFew studies have addressed the cellular effects of bisphenol S (BPS) and bisphenol AF (BPAF) on cells, and no study has been conducted to analyze the mechanism of action of bisphenols in blood cells. In this study, the effect of bisphenol A (BPA), bisphenol F (BPF), BPS and BPAF on human peripheral blood mononuclear cells (PBMCs) was analyzed. It was shown that BPA, BPF and BPAF in particular, decreased cell viability, which was associated with depletion of intracellular ATP level and alterations in PBMCs size and granulation.
View Article and Find Full Text PDFIn this study, we have assessed apoptotic effect of 1,2,4-trichlorobenzene, hexachlorobenzene, lindane and dieldrin on human peripheral blood lymphocytes. We observed an increase in ROS formation and a decrease in mitochondrial transmembrane potential in the cells incubated with low concentrations of all compounds studied, in particular lindane and dieldrin. ROS formation and changes in mitochondrial transmembrane potential may have influenced caspase-3 activation, a crucial enzyme in the apoptotic process.
View Article and Find Full Text PDF