Publications by authors named "Katarzyna Kurpiewska"

This study presents a comprehensive structural analysis of the adducts formed upon the reaction of two Ru(III) complexes [HIsq][-RuCl(dmso)(Isq)] () and [HInd][-RuCl(dmso)(HInd)] () (where HInd-indazole, Isq-isoquinoline, analogs of NAMI-A) and two Ru(II) complexes, -[RuCl(dmso)] () and -[RuCl(dmso)] (), with hen-egg white lysozyme (HEWL). Additionally, the crystal structure of an adduct of human lysozyme (HL) with ruthenium complex, [HInd][-RuCl(dmso)(HInd)] was solved. X-ray crystallographic data analysis revealed that all studied Ru complexes, regardless of coordination surroundings and metal center charge, coordinate to the same amino acids (His15, Arg14, and Asp101) of HEWL, losing most of their original ligands.

View Article and Find Full Text PDF

The S2 nucleophilic substitution reaction is a vital organic transformation used for drug and natural product synthesis. Nucleophiles like cyanide, oxygen, nitrogen, sulfur, or phosphorous replace halogens or sulfonyl esters, forming new bonds. Isocyanides exhibit unique C-centered lone pair σ and π* orbitals, enabling diverse radical and multicomponent reactions.

View Article and Find Full Text PDF

β-Lactoglobulin (BLG) is a member of the lipocalin family. As other proteins from this group, BLG can be modified to bind specifically compounds of medical interests. The aim of this study was to evaluate the role of two mutations, L39Y and L58F, in the binding of topical anesthetic pramoxine (PRM) to β-lactoglobulin.

View Article and Find Full Text PDF

Guanine is one out of five endogenous nucleobases and of key interest in drug discovery and chemical biology. Hitherto, the synthesis of guanine derivatives involves lengthy multistep sequential synthesis of low overall diversity, resulting in the quest for innovation. Using a "single-atom skeletal editing" approach, we designed 2-aminoimidazo[2,1-][1,2,4]triazin-4(3)-one as a guanine isostere, conserving the biologically important HBA-HBD-HBD (HBA = hydrogen bond acceptor; HBD = hydrogen bond donor) substructure.

View Article and Find Full Text PDF

3-Ketosteroid Δ-dehydrogenases (KstD) are important microbial flavin enzymes that initiate the metabolism of steroid ring A and find application in the synthesis of steroid drugs. We present a structure of the KstD from (AcmB), which contains a previously uncharacterized putative membrane-associated domain and extended proton-relay system. The experimental and theoretical studies show that the steroid Δ-dehydrogenation proceeds according to the Ping-Pong bi-bi kinetics and a two-step base-assisted elimination (E2cB) mechanism.

View Article and Find Full Text PDF

We achieved a divergent synthesis of isoquinolin-2(1)-yl-acetamides (16 examples, up to 90% yields) and regioselective isoindolin-2-yl-acetamides (14 examples, up to 93% yields) in moderate to good yields by reacting various substituted ethanones or terminal alkynes with Ugi-4CR intermediates via an ammonia-Ugi-4CR/Copper(I)-catalyzed annulation sequence reaction. The same intermediate thus gives 2D distant but 3D closely related scaffolds, which can be of high interest in exploiting chemistry space on a receptor. The scopes and limitations of these efficient sequence reactions are described, as well as gram-scale synthesis.

View Article and Find Full Text PDF

The structures and magnetic properties of photoresponsive magnets can be controlled or fine-tuned by visible light irradiation, which makes them appealing as candidates for ternary memory devices: photochromic and photomagnetic at the same time. One of the strategies for photoresponsive magnetic systems is the use of photochromic/photoswitchable molecules coordinated to paramagnetic metal centers to indirectly influence their magnetic properties. Herein, we present two erbium(III)-based coordination systems: a trinuclear molecule {[Er(BHT)](dtepy)}4CH () and a 1D coordination chain {[Er(BHT)(azopy)}·2CH (), where the bridging photochromic ligands belong to the class of diarylethenes: 1,2-bis((2-methyl-5-pyridyl)thie-3-yl)perfluorocyclopentene (dtepy) and 4,4'-azopyridine (azopy), respectively (BHT = 2,6-di--butyl-4-methylphenolate).

View Article and Find Full Text PDF

A short, concise, and one-pot synthesis of imidazo-fused heterocycle dimers with tunable fluorescent properties has been developed. By the first time use of glyoxal dimethyl acetal in the Groebke-Blackburn-Bienaymé (GBB) three-component reaction (3CR), the innovation features a new series of fluorescence-tunable imidazo-fused heterocycle dimers exhibiting a broad substrate scope with good yields. Luminescence studies demonstrate that these GBB-dimers possess color-tunable properties, and their emission colors can be successively changed from blue to green and yellow by easy substituent control.

View Article and Find Full Text PDF

Discovering novel synthetic routes for rigid nitrogen-containing polyheterocycles using sustainable, atom-economical, and efficient (= short) synthetic pathways is of high interest in organic chemistry. Here, we describe an operationally simple and short synthesis of the privileged scaffold dihydropyrrolo[1,2-]pyrazine-dione from readily accessible starting materials. The alkaloid-type polycyclic scaffold with potential bioactivity was achieved by a multicomponent reaction (MCR)-based protocol via a Ugi four-component reaction and Pictet-Spengler sequence under different conditions, yielding a diverse library of products.

View Article and Find Full Text PDF

The aim of this brief review is to provide a roadmap for beginning crystallographers who have little or no experience in structural biology and yet are keen to produce protein crystals and analyze their 3D structures to understand their biological roles. To achieve this goal it is crucial to perform crystallization, structure determination, visualization and analysis of the protein's structural features related to its biological function. Keeping that objective in mind, tips presented herein cover the most important steps in a crystallographic endeavor and present a selection of databases and software which can aid and accelerate the whole process.

View Article and Find Full Text PDF

Glycosomal malate dehydrogenase from Trypanosoma cruzi (tcgMDH) catalyzes the oxidation/reduction of malate/oxaloacetate, a crucial step of the glycolytic process occurring in the glycosome of the human parasite. Inhibition of tcgMDH is considered a druggable trait for the development of trypanocidal drugs. Sequence comparison of MDHs from different organisms revealed a distinct insertion of a prolin rich 9-mer (62-KLPPVPRDP-70) in tcgMDH as compared to other eukaryotic MDHs.

View Article and Find Full Text PDF

Oligoisocyanides are attractive synthetic targets, however, only a few are known. Here, we describe the smallest stable tetraisocyanide possible, the 1,3-diisocyano-2,2-bis(isocyano-methyl)propane (1) with S4 symmetry. Its four-step synthesis, structure, and reactivity in unprecedented symmetric fourfold Ugi 4CR and fourfold Passerini 3CR are described.

View Article and Find Full Text PDF

Thebaine 6-O-demethylase (T6ODM) is an Fe(II)/2-oxoglutarate-dependent dioxygenase catalysing two oxidative O-demethylation reactions in morphine biosynthesis. Its crystal structure revealed a large active site pocket which is at least two times larger than necessary to accommodate a substrate (thebaine or oripavine) molecule. Since so far no crystal structures have been obtained for enzyme-substrate complex, which is necessary to explain the enzyme regiospecificity towards the C6-bound methoxy group, in this work we used computational methods and multi-parametric surface plasmon resonance measurements to elucidate the most likely structure of this complex and the reaction mechanism starting therefrom.

View Article and Find Full Text PDF

Easy operation, readily accessible starting materials, and short syntheses of the privileged scaffold indeno[1,2-]isoquinolinone were achieved by an multicomponent reaction (MCR)-based protocol via an ammonia-Ugi-four component reaction (4CR)/copper-catalyzed annulation sequence. The optimization and scope and limitations of this short and general sequence are described. The methodology allows an efficient construction of a wide variety of indenoisoquinolinones in just two steps.

View Article and Find Full Text PDF

Physicochemical property switching of chemical space is of great importance for optimization of compounds, for example, for biological activity. Cyclization is a key method to control 3D and other properties. A two-step approach, which involves a multicomponent reaction followed by cyclization, is reported to achieve the transition from basic moieties to charge neutral cyclic derivatives.

View Article and Find Full Text PDF
Article Synopsis
  • Hyoscyamine 6β-hydroxylase (H6H) is an enzyme that plays a key role in the last two steps of scopolamine production, using iron and oxygen in its reaction.
  • High-resolution crystal structures of H6H from Datura metel revealed how it binds to its substrate and highlighted the important roles of two amino acids, Glu-116 and Tyr-326, in the enzymatic process.
  • Computational calculations were performed to understand why hydroxylation occurs at specific carbon positions on hyoscyamine, with results indicating the contributions of different active site residues to the reaction's energy barriers.
View Article and Find Full Text PDF

Recombinant proteins play an important role in medicine and have diverse applications in industrial biotechnology. Lactoglobulin has shown great potential for use in targeted drug delivery and body fluid detoxification because of its ability to bind a variety of molecules. In order to modify the biophysical properties of β-lactoglobulin, a series of single-site mutations were designed using a structure-based approach.

View Article and Find Full Text PDF

Amino acid-derived isocyano amides together with TMSN3, oxocomponents and 1° or 2° amines are common substrates in the Ugi tetrazole reaction. We surprisingly found that combining these substrates gives two different constitutional isomeric Ugi products A and B. A is the expected classical Ugi product whereas B is an isomeric product ('atypical Ugi') of the same molecular weight with the tetrazole heterocycle migrated to a different position.

View Article and Find Full Text PDF

Boronic acids are amongst the most useful synthetic intermediates, frequently used by modern drug design. However, their access and fast synthesis of libraries are often problematic. We present a methodology on the synthesis of drug-like scaffolds via IMCRs with unprotected phenylboronic acids.

View Article and Find Full Text PDF

Intrinsically disordered proteins are an emerging class of proteins without a folded structure and currently disorder-based drug targeting remains a challenge. p53 is the principal regulator of cell division and growth whereas MDM2 consists its main negative regulator. The MDM2-p53 recognition is a dynamic and multistage process that amongst other, employs the dissociation of a transient α-helical N-terminal ''lid'' segment of MDM2 from the proximity of the p53-complementary interface.

View Article and Find Full Text PDF

A facile, high yielding access to rare chimeric compounds combining phosphorus ylides with complex glycosyl formamides is described. We determined x-ray structures gaining structural insight into this compounds class. In addition, data mining of similar compounds deposited within the Cambridge Structural Database was performed.

View Article and Find Full Text PDF

The Pomeranz-Fritsch reaction and its Schlittler-Müller modification were successfully applied in the Ugi postcyclization strategy by using orthogonally protected aminoacetaldehyde diethyl acetal and complementary electron rich building blocks. Several scaffolds, including isoquinolines, carboline, alkaloid-like tetrazole-fused tetracyclic compounds, and benzo[ d]azepinone scaffolds, were synthesized in generally moderate to good yield. All our syntheses provide a short MCR-based sequence to novel or otherwise difficult to access scaffolds.

View Article and Find Full Text PDF

Miniaturization and acceleration of synthetic chemistry are critically important for rapid property optimization in pharmaceutical, agrochemical, and materials research and development. However, in most laboratories organic synthesis is still performed on a slow, sequential, and material-consuming scale and not validated for multiple substrate combinations. Herein, we introduce fast and touchless acoustic droplet ejection (ADE) technology into small-molecule chemistry to transfer building blocks by nL droplets and to scout a newly designed isoquinoline synthesis.

View Article and Find Full Text PDF

3D structural information was obtained from mono-, di- and trisaccharide formamide and isocyanide derivatives by analysis of their X-ray crystal structure and NMR spectroscopy. The isocyanide anomeric effect was observed. Data mining of the Cambridge Structural Database (CSD) was performed and statistically confirmed our findings.

View Article and Find Full Text PDF