Prenatal excess of glucocorticoids (GCs) is considered to be one of the highly impacting factors contributing to depression development. Although GCs are crucial for normal fetal development and their administration (mainly dexamethasone, DEX) is a life-saving procedure for those at risk of preterm delivery, exposure to excess levels of GCs during pregnancy can yield detrimental consequences. Therefore, we aimed to systematically investigate the brain molecular alterations triggered by prenatal DEX administration.
View Article and Find Full Text PDFBackground: Maternal elevated glucocorticoid levels during pregnancy can affect the developing fetus, permanently altering the structure and function of its brain throughout life. Excessive action of these hormones is known to contribute to psychiatric disorders, including depression.
Materials: The study was performed in a rat model of depression based on prenatal administration of dexamethasone (DEX) in late pregnancy (0.
Since depression produces a long-term negative impact on quality of life, understanding the pathophysiological changes implicated in this disorder is urgent. There is growing evidence that demonstrates a key role for dysfunctional energy metabolism in driving the onset of depression; thus, bioenergetic alterations should be extensively studied. Brain metabolism is known to be a glucocorticoid-sensitive process, but the long-lasting consequences in adulthood following high levels of glucocorticoids at the early stages of life are unclear.
View Article and Find Full Text PDFMetabolic disturbances in the brain are assumed to be early changes involved in the pathogenesis of depression, and these alterations may be intensified by a deficiency of thyroid hormones. In contrast to glucose metabolism, the link between altered brain lipids and the pathogenesis of depression is poorly understood, therefore in the present study, we determine transcription factors and enzymes regulating cholesterol and fatty acid biosynthesis in the brain structures in an animal model of depression, hypothyroidism and the coexistence of these diseases.In used model of depression, a decrease in the active form of the transcription factor SREBP-2 in the hippocampus was demonstrated, thus suggesting a reduction in cholesterol biosynthesis.
View Article and Find Full Text PDFThe developing and adult brain is a target organ for the vast majority of hormones produced by the body, which are able to cross the blood-brain barrier and bind to their specific receptors on neurons and glial cells. Hormones ensure proper communication between the brain and the body by activating adaptive mechanisms necessary to withstand and react to changes in internal and external conditions by regulating neuronal and synaptic plasticity, neurogenesis and metabolic activity of the brain. The influence of hormones on energy metabolism and mitochondrial function in the brain has gained much attention since mitochondrial dysfunctions are observed in many different pathological conditions of the central nervous system.
View Article and Find Full Text PDFThe clinical effectiveness of supportive therapy with thyroid hormones in drug-resistant depression is well-known; however, the mechanisms of action of these hormones in the adult brain have not been fully elucidated to date. We determined the effects of venlafaxine and/or L-thyroxine on metabolic parameters and markers involved in the regulation of synaptic plasticity and cell damage in an animal model of coexisting depression and hypothyroidism, namely, Wistar Kyoto rats treated with propylthiouracil. In this model, in relation to the depression model itself, the glycolysis process in the brain was weakened, and a reduction in pyruvate dehydrogenase in the frontal cortex was normalized only by the combined treatment with L-thyroxine and venlafaxine, whereas changes in pyruvate and lactate levels were affected by all applied therapies.
View Article and Find Full Text PDFDepression is a highly prevalent mood disorder and one of the major health concerns in modern society. Moreover, it is characterized by a high prevalence of coexistence with many other diseases including metabolic disorders such as type 2 diabetes mellitus (T2DM) and obesity. Currently used antidepressant drugs, which mostly target brain monoaminergic neurotransmission, have limited clinical efficacy.
View Article and Find Full Text PDFDepression is an affective disease with a complex clinical picture that is characterized by mood and emotional disturbances. It is known that several factors contribute to the risk of developing depression. The concept that mitochondrial dysfunction is one of the causes of depression is supported by a wide range of studies on cell cultures, animal models, and clinical research.
View Article and Find Full Text PDFThe role that thyroid hormone deficiency plays in depression and synaptic plasticity in adults has only begun to be elucidated. This paper analyzes the possible link between depression and hypothyroidism in cognitive function alterations, using Wistar-Kyoto (WKY-an animal model of depression) rats and control Wistar rats under standard and thyroid hormone deficiency conditions (propylthiouracil administration-PTU). A weakening of memory processes in the WKY rats is shown behaviorally, and in the reduction of long-term potentiation (LTP) in the dentate gyrus (DG) and CA1 hippocampal regions.
View Article and Find Full Text PDFAlthough hypothyroidism appears to be an important factor in the pathogenesis of depression, the impact of thyroid hormones on the bioenergetics of the adult brain is still poorly known. Since metabolic changes are reported to be a key player in the manifestation of depressive disorder, we investigated whether there are differences in selected metabolic markers in the frontal cortex and hippocampus of Wistar Kyoto rats (WKY; an animal model of depression) compared to those of control Wistar rats and whether the induction of hypothyroidism by propylthiouracil (PTU) elicits similar effects in these animals or intensifies some parameters in the WKY rats. In our study, we used WKY rats as a model of depression since this strain exhibits lower levels of monoamines in the brain than control rats and exhibits behavioral and hormonal alterations resembling those of depression, including increased reactivity to stress.
View Article and Find Full Text PDFCurrent data suggest an important role of brain metabolic disturbances in the pathogenesis of depression and obesity, diseases that frequently co-occur. Our aim was to determine whether there are changes in markers characterizing glucose metabolism in prenatal stress (PS; animal model of depression), in rats fed a high-fat diet (HFD), and especially in the model of depression and obesity co-occurrence. The changes in glucose-6-phosphate, glycogen, glucose transporters (GLUT1, GLUT4), glucagon-like peptide-1 receptor (GLP-1R), and mitochondrial complexes levels in the frontal cortex and/or hippocampus were observed.
View Article and Find Full Text PDFGestational diabetes is a disorder associated with abnormal chronic inflammation that poses a risk to the developing fetus. We investigated the effects of experimentally induced diabetes (streptozotocin model) in Wistar female rats on the inflammatory status of the hippocampi of their offspring. Additionally, the impact of antidiabetic drugs (metformin and glyburide) on inflammatory processes was evaluated.
View Article and Find Full Text PDFAn increasing body of evidence postulates that microglia are the main mediators of inflammation-related disorders, including depression. Since activated microglia produce a wide range of pro- and anti-inflammatory factors, the modulation of M1/M2 microglial polarization by antidepressants may be crucial in the treatment of depression. The current paper aimed to investigate the impact of tianeptine on the microglia’s viability/death parameters, and on M1/M2 microglial activation in response to lipopolysaccharide (LPS) stimulation.
View Article and Find Full Text PDFObesity is a disease that often co-occurs with depression, and some evidence indicates that chronic stress in the perinatal period, in association with overactive glucocorticoids, can cause permanent changes that increase the risk of the development of both depression and obesity later in life. However, the mechanism responsible for the overly potent action of glucocorticoids in both depression and obesity is not known. The aim of the present study was to determine the expression of glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) and the factors that affect GR function (FKBP51, Bag-1 and HSP70) in a prenatal stress animal model of depression, a model of obesity and a model of both depression and obesity.
View Article and Find Full Text PDFBackground: Alteration in the brain mitochondrial functions have been suggested to participate, as a relevant factor, in the development of mental disorders. Therefore, the brain mitochondria may be a crucial therapeutic target in the course of depression.
Methods: Our goal was to find out the impact of two antidepressant drugs with various mechanisms of action - imipramine and fluoxetine, on the frontal cortex mitochondria-enriched fraction in an animal model of depression based on the prenatal stress procedure.
An increasing number of studies indicate that the chemokine system may be the third major communication system of the brain. Therefore, the role of the chemokine system in the development of brain disorders, including depression, has been recently proposed. However, little is known about the impact of the administration of various antidepressant drugs on the brain chemokine - chemokine receptor axis.
View Article and Find Full Text PDFSeveral lines of evidence indicate that adverse experience in early life may be a triggering factor for disturbances in the brain mitochondrial proteins and lead to the development of depression in adulthood. On the other hand, little is known about the impact of chronic administration of various antidepressant drugs on the brain mitochondria, as a target for the pharmacotherapy of depression. The purpose of our study was to compare the impact of chronic treatment with two antidepressant drugs with different mechanisms of action, a tricyclic antidepressant (TCA), imipramine, and an antidepressant of the selective serotonin reuptake inhibitor (SSRI) class, fluoxetine, on the mitochondria-enriched subproteome profile in the hippocampus of 3-month-old male rats following a prenatal stress procedure (an animal model of depression).
View Article and Find Full Text PDFSome antidepressants show a significantly lower efficacy in elderly patients, particularly in women. Previous studies have shown that antidepressants administered to young animals reduced depression-like symptoms induced by lipopolysaccharide (LPS). The aim of this study was to find out whether the antidepressant and anti-inflammatory properties of fluoxetine (FLU) can be observed also in old female C57BL/6J mice.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2018
The effect of antidepressant drugs on tumor progress is very poorly recognized. The aim of the present study was to examine the effect of individual reactivity to stress and 24-day desipramine (DES) administration on the metastatic colonization of adenocarcinoma MADB 106 cells in the lungs of Wistar rats. Wistar rats were subjected to stress procedure according to the chronic mild stress (CMS) model of depression for two weeks and stress highly-sensitive (SHS) and stress non-reactive (SNR) rats were selected.
View Article and Find Full Text PDFThe role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer's disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes.
View Article and Find Full Text PDFA growing body of evidence supports the involvement of disturbances in the brain insulin pathway in the pathogenesis of depression. On the other hand, data concerning the impact of antidepressant drug therapy on brain insulin signaling remain scare and insufficient. We determinated the influence of chronic treatment with antidepressant drugs (imipramine, fluoxetine and tianeptine) on the insulin signaling pathway of the brain of adult prenatally stressed rats.
View Article and Find Full Text PDFThe potential contribution of inflammation to the development of neuropsychiatric diseases has recently received substantial attention. In the brain, the main immune cells are the microglia. As they are the main source of inflammatory factors, it is plausible that the regulation of their activation may be a potential therapeutic target.
View Article and Find Full Text PDFSeveral lines of evidence indicate that adverse experience in early life may be a triggering factor for pathological inflammatory processes and lead to the development of depression. Fractalkine (CX3CL1), a chemokine, plays an important role not only in the migration, differentiation and proliferation of neuronal and glial cells but also in the regulation of neuronal-microglial signaling and the production of pro-inflammatory factors. In the present study, we examined the impact of a prenatal stress procedure on the expression of fractalkine in the hippocampus and frontal cortex of young and adult male rats.
View Article and Find Full Text PDF