Publications by authors named "Katarzyna Gembara"

Multiple pathogens are competing against the human immune response, leading to outbreaks that are increasingly difficult to control. For example, the SARS-CoV-2 virus continually evolves, giving rise to new variants. The ability to evade the immune system is a crucial factor contributing to the spread of these variants within the human population.

View Article and Find Full Text PDF

In all cases when a bacteriophage makes a direct contact with a mammalian organism, it may challenge the mammalian immunological system. Its major consequence is the production of antibodies specific to the bacteriophage, particularly IgM, IgG, and IgA as the typical response. Here we present protocols applicable in studies of the ability of bacteriophage to induce specific antibodies; immunization to whole virions or to isolated phage proteins has been included.

View Article and Find Full Text PDF

Bacteriolytic enzymes are promising antibacterial agents, but they can cause a typical immune response . In this study, we used a targeted modification method for two antibacterial endolysins, Pal and Cpl-1. We identified the key immunogenic amino acids, and designed and tested new, bacteriolytic variants with altered immunogenicity.

View Article and Find Full Text PDF

Predictors for the risk of severe COVID-19 are crucial for patient care and control of the disease. Other infectious diseases as potential comorbidities in SARS-CoV-2 infection are still poorly understood. Here we identify association between the course of COVID-19 and Lyme disease (borreliosis), caused by Borrelia burgdorferi transmitted to humans by ticks.

View Article and Find Full Text PDF

The immune response and specific antibody production in COVID-19 are among the key factors that determine both prognostics for individual patients and the global perspective for controlling the pandemics. So called "dark figure", that is, a part of population that has been infected but not registered by the health care system, make it difficult to estimate herd immunity and to predict pandemic trajectories. Here we present a follow up study of population screening for hidden herd immunity to SARS-CoV-2 in individuals who had never been positively diagnosed against SARS-CoV-2; the first screening was in May 2021, and the follow up in December 2021.

View Article and Find Full Text PDF

Endolysins are bacteriolytic enzymes derived from bacteriophages. They represent an alternative to antibiotics, since they are not susceptible to conventional antimicrobial resistance mechanisms. Since non-human proteins are efficient inducers of specific immune responses, including the IgG response or the development of an allergic response mediated by IgE, we evaluated the general immunogenicity of the highly active antibacterial enzyme, PlyC, in a human population and in a mouse model.

View Article and Find Full Text PDF

Population immunity (herd immunity) to SARS-CoV-2 derives from two sources: vaccinations or cases of infection with the virus. Infections can be diagnosed as COVID-19 and registered, or they can be asymptomatic, oligosymptomatic, or even full-blown but undiagnosed and unregistered when patients recovered at home. Estimation of population immunity to SARS-CoV-2 is difficult and remains a subject of speculations.

View Article and Find Full Text PDF

Increasing number of deaths from multi-drug resistant bacterial infections has caused both the World Health Organization and the Centers for Disease Control and Prevention to repeatedly call for development of new, non-traditional antibacterial treatments. Antimicrobial enzymes, including those derived from bacteriophages, known as endolysins or enzybiotics, are considered promising solutions among the emerging therapies. These naturally occurring proteins specifically destroy bacterial cell walls (peptidoglycan) and as such, are capable of killing several logs of bacteria within minutes.

View Article and Find Full Text PDF

Antibodies specific to phage virions have been observed many times, both in animals and in humans. Phages induce the T-dependent type of immune response, which is fundamental for immunological memory and long retention of abilities to recognize and respond to foreign epitopes. Experimental models have shown that phage-specific antibodies can be devastating for a phage in vivo.

View Article and Find Full Text PDF

Bacteriophages may induce specific antibodies after natural exposure to phages or after phage therapy. As such, phage-specific antibodies might impact phage bioavailability , although limited non-neutralizing or insignificant effects have also been reported. Here, we report antibody induction against PB1-related phages ( viruses LMA2, F8, DP1) in mice over an 80-day period, for a healthy population of humans, and in patients undergoing phage therapy (oral and/or topical treatment).

View Article and Find Full Text PDF