Publications by authors named "Katarzyna Frankowiak"

During the Carnian, oligotrophic shallow-water regions of the western Tethys were occupied by small, coral-rich patch reefs. Scleractinian corals, which already contributed to the formation of the reef structure, owed their position most probably to the symbiosis with dinoflagellate algae (zooxanthellae). Using microstructural (regularity of growth increments) and geochemical (oxygen and carbon stable isotopes) criteria of zooxanthellae symbiosis, we investigated whether this partnership was widespread among Carnian scleractinians from the Italian Dolomites (locality Alpe di Specie).

View Article and Find Full Text PDF

Roughly 240 million years ago (Ma), scleractinian corals rapidly expanded and diversified across shallow marine environments. The main driver behind this evolution is uncertain, but the ecological success of modern reef-building corals is attributed to their nutritional symbiosis with photosynthesizing dinoflagellate algae. We show that a suite of exceptionally preserved Late Triassic (ca.

View Article and Find Full Text PDF

Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators-none of them being particularly robust.

View Article and Find Full Text PDF