Publications by authors named "Katarzyna C Pituch"

Background: Canine elbow dysplasia (CED) is a complex developmental skeletal disorder associated with a number of pathological conditions within the cubital joint. Because CED is a heritable disease, it is important to identify and remove the affected animals from breeding. The first objective of this study was to describe the prevalence of medial coronoid process disease (MCPD) without (MCD) or with (FMCP) fragmented medial coronoid process, osteochondrosis (OC) and/or osteochondritis dissecans (OCD), ununited anconeal process (UAP), radio-ulnar incongruence (INC R-U) and humero-ulnar incongruence (INC H-U) in dogs with the use of CT imaging.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most lethal primary brain tumor in adults. No treatment provides durable relief for the vast majority of GBM patients. In this study, we've tested a bispecific antibody comprised of single-chain variable fragments (scFvs) against T cell CD3ε and GBM cell interleukin 13 receptor alpha 2 (IL13Rα2).

View Article and Find Full Text PDF

Purpose: Diffuse intrinsic pontine glioma (DIPG) is among the deadliest of pediatric brain tumors. Radiotherapy is the standard-of-care treatment for DIPG, but offers only transient relief of symptoms for patients with DIPG without providing significant survival benefit. Oncolytic virotherapy is an anticancer treatment that has been investigated for treating various types of brain tumors.

View Article and Find Full Text PDF

Metastases from primary breast cancer result in poor survival. βIII-tubulin (TUBB3) has been established as a therapeutic target for breast cancer metastases specifically to the brain. In this study, we conducted a systematic analysis to determine the regulation of expression in breast cancer metastases to the brain and strategically target these metastases using vinorelbine (VRB), a drug approved by the U.

View Article and Find Full Text PDF

Amino acid deprivation is a strategy that malignancies utilize to blunt anti-tumor T-cell immune responses. It has been proposed that amino acid insufficiency in T-cells is detected by GCN2 kinase, which through phosphorylation of EIF2α, shuts down global protein synthesis leading to T-cell arrest. The role of this amino acid stress sensor in the context of malignant brain tumors has not yet been studied, and may elucidate important insights into the mechanisms of T-cell survival in this harsh environment.

View Article and Find Full Text PDF

Tumor-associated myeloid cells (TAMCs) are key drivers of immunosuppression in the tumor microenvironment, which profoundly impedes the clinical response to immune-dependent and conventional therapeutic modalities. As a hallmark of glioblastoma (GBM), TAMCs are massively recruited to reach up to 50% of the brain tumor mass. Therefore, they have recently been recognized as an appealing therapeutic target to blunt immunosuppression in GBM with the hope of maximizing the clinical outcome of antitumor therapies.

View Article and Find Full Text PDF

The potent immunosuppression induced by glioblastoma (GBM) is one of the primary obstacles to finding effective immunotherapies. One hallmark of the GBM-associated immunosuppressive landscape is the massive infiltration of myeloid-derived suppressor cells (MDSC) and, to a lesser extent, regulatory T cells (Treg) within the tumor microenvironment. Here, we showed that regulatory B cells (Breg) are a prominent feature of the GBM microenvironment in both preclinical models and clinical samples.

View Article and Find Full Text PDF

Unlabelled: Glioblastoma (GBM) remains the most lethal and untreatable central nervous system malignancy. The challenges to devise novel and effective anti-tumor therapies include difficulty in locating the precise tumor border for complete surgical resection, and rapid regrowth of residual tumor tissue after standard treatment. Repeatable and non-invasive intranasal application of neural stem cells (NSCs) was recently shown to enable clinically relevant delivery of therapy to tumors.

View Article and Find Full Text PDF

The immunosuppressive microenvironment is one of the major factors promoting the growth of glioblastoma multiforme (GBM). Infiltration of CD4CD25Foxp3 regulatory T cells (Tregs) into the tumor microenvironment plays a significant role in the suppression of the anti-tumor immunity and portends a dismal prognosis for patients. Glioma-mediated secretion of chemo-attractant C-C motif ligand 2 and 22 (CCL2/22) has previously been shown by our group to promote Treg migration in vitro.

View Article and Find Full Text PDF

In order to fully harness the potential of immunotherapy with chimeric antigen receptor (CAR)-modified T cells, pre-clinical studies must be conducted in immunocompetent animal models that closely mimic the immunosuppressive malignant glioma (MG) microenvironment. Thus, the goal of this project was to study the in vivo fate of T cells expressing CARs specific for the MG antigen IL13Rα2 (IL13Rα2-CARs) in immunocompetent MG models. Murine T cells expressing IL13Rα2-CARs with a CD28.

View Article and Find Full Text PDF

Analysis of microRNA (miR) expression in the central nervous system white matter of SJL mice infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) revealed a significant reduction of miR-219, a critical regulator of myelin assembly and repair. Restoration of miR-219 expression by intranasal administration of a synthetic miR-219 mimic before disease onset ameliorates clinical disease, reduces neurogliosis, and partially recovers motor and sensorimotor function by negatively regulating proinflammatory cytokines and virus RNA replication. Moreover, RNA sequencing of host lesions showed that miR-219 significantly downregulated two genes essential for the biosynthetic cholesterol pathway, Cyp51 (lanosterol 14-α-demethylase) and Srebf1 (sterol regulatory element-binding protein-1), and reduced cholesterol biosynthesis in infected mice and rat CG-4 glial precursor cells in culture.

View Article and Find Full Text PDF

In many aggressive cancers, such as glioblastoma multiforme, progression is enabled by local immunosuppression driven by the accumulation of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC). However, the mechanistic details of how Tregs and MDSCs are recruited in various tumors are not yet well understood. Here we report that macrophages and microglia within the glioma microenvironment produce CCL2, a chemokine that is critical for recruiting both CCR4 Treg and CCR2Ly-6C monocytic MDSCs in this disease setting.

View Article and Find Full Text PDF

The membrane-bound receptor for platelet-derived growth factor A (PDGFRα) is crucial for controlling the production of oligodendrocytes (OLs) for myelination, but regulation of its activity during OL differentiation is largely unknown. We have examined the effect of increased sulfated content of galactosylceramides (sulfatides) on the regulation of PDGFRα in multipotential neural precursors (NPs) that are deficient in arylsulfatase A (ASA) activity. This enzyme is responsible for the lysosomal hydrolysis of sulfatides.

View Article and Find Full Text PDF