Publications by authors named "Katarzyna Blazewska"

The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism.

View Article and Find Full Text PDF

Proteolysis targeting chimera (PROTACs) provide a novel therapeutic approach that is revolutionizing drug discovery. The success of PROTACs largely depends on the combination of their three fragments: E3 ligase ligand, linker and protein of interest (POI)-targeting ligand. We summarize the pivotal significance of the precise combination of the E3 ligase ligand with the POI-recruiting warhead, which is crucial for the successful execution of cellular processes and achieving the desired outcomes.

View Article and Find Full Text PDF

Protein lipidation is a post-translational modification that confers hydrophobicity on protein substrates to control their cellular localization, mediate protein trafficking, and regulate protein function. In particular, protein prenylation is a C-terminal modification on proteins bearing canonical motifs catalyzed by prenyltransferases. Prenylated proteins have been of interest due to their numerous associations with various diseases.

View Article and Find Full Text PDF

PROTACs represent an emerging field in medicinal chemistry, which has already led to the development of compounds that reached clinical studies. Posttranslational modifications contribute to the complexity of proteomes, with 2846 disease-associated sites. PROTAC field is very advanced in targeting kinases, while its use for enzymes mediating posttranslational modifications of the basic amino acid residues, started to be developed recently.

View Article and Find Full Text PDF

Protein prenylation is a post-translational modification controlling the localization, activity, and protein-protein interactions of small GTPases, including the Ras superfamily. This covalent attachment of either a farnesyl (15 carbon) or a geranylgeranyl (20 carbon) isoprenoid group is catalyzed by four prenyltransferases, namely farnesyltransferase (FTase), geranylgeranyltransferase type I (GGTase-I), Rab geranylgeranyltransferase (GGTase-II), and recently discovered geranylgeranyltransferase type III (GGTase-III). Blocking small GTPase activity, namely inhibiting prenyltransferases, has been proposed as a potential disease treatment method.

View Article and Find Full Text PDF

Rab geranylgeranyltransferase (GGTase-II, RGGT) catalyses the post-translational modification of eukaryotic Rab GTPases, proteins implicated in several pathologies, including cancer, diabetes, neurodegenerative, and infectious diseases. Thus, RGGT inhibitors are believed to be a potential platform for the development of drugs and tools for studying processes related to the abnormal activity of Rab GTPases. Here, a series of new α-phosphonocarboxylates have been prepared in the first attempt of rational design of covalent inhibitors of RGGT derived from non-covalent inhibitors.

View Article and Find Full Text PDF

A fundamental role of pancreatic β-cells to maintain proper blood glucose level is controlled by the Ras superfamily of small GTPases that undergo post-translational modifications, including prenylation. This covalent attachment with either a farnesyl or a geranylgeranyl group controls their localization, activity, and protein-protein interactions. Small GTPases are critical in maintaining glucose homeostasis acting in the pancreas and metabolically active tissues such as skeletal muscles, liver, or adipocytes.

View Article and Find Full Text PDF

Twelve phosphonopropionates derived from 2-hydroxy-3-imidazo[1,2-]pyridin-3--2-phosphonopropionic acid (3-IPEHPC) were synthesized and evaluated for their activity as inhibitors of protein geranylgeranylation. The nature of the substituent in the C6 position of imidazo[1,2-]pyridine ring was responsible for the compound's activity against Rab geranylgeranyl transferase (RGGT). The most active inhibitors disrupted Rab11A prenylation in the human cervical carcinoma HeLa cell line.

View Article and Find Full Text PDF

Poly(dimethylosiloxane) (PDMS) cross-linked by metal-ligand coordination has a potential functionality for electronic devices applications. In this work, the molecular dynamics of bipyridine (bpy)-PDMS-MeCl (Me: Mn, Fe, Ni, and Zn) are investigated by means of broadband dielectric spectroscopy and supported by differential scanning calorimetry and density functional theory calculations. The study of molecular motions covered a broad range of temperatures and frequencies and was performed for the first time for metal-ligand cross-linked PDMS.

View Article and Find Full Text PDF

The McKenna reaction is a well-known and popular method for the efficient and mild synthesis of organophosphorus acids. Bromotrimethylsilane (BTMS) is the main reagent in this reaction, which transforms dialkyl phosphonate esters into bis(trimethylsilyl)esters, which are then easily converted into the target acids. However, the versatile character of the McKenna reaction is not always used to its full extent, due to formation of side products.

View Article and Find Full Text PDF

A series of new phosphonocarboxylates containing an imidazo[1,2-]pyridine ring has been synthesized via the microwave-assisted Mizoroki-Heck reaction. The efficient modification of the imidazo[1,2-]pyridine ring has been achieved as late-stage functionalization, enabling and accelerating the generation of a library of compounds from a common precursor.

View Article and Find Full Text PDF

Studies on the human proteome have engaged diverse techniques; however, none of them represent a predominant approach. Chemical biology has made a major contribution to our understanding of human biology, stimulating the generation of biological hypotheses. Tools such as functional probes have advanced studies on biological mechanisms and helped in elucidating off-target reactivity and potential toxicities of drugs and drug candidates.

View Article and Find Full Text PDF

Rab geranylgeranyl transferase (RGGT) is an interesting therapeutic target, as it ensures proper functioning of Rab GTPases, a class of enzymes responsible for the regulation of vesicle trafficking. Relying on our previous studies, we synthesized a set of new α-phosphonocarboxylic acids as potential RGGT inhibitors, with emphasis on the elaboration of imidazole-containing analogues. We identified two compounds with activity similar to that of previously reported RGGT inhibitors, showing structural similarity to imidazo[1,2-a]pyridine-containing analogues in terms of their substitution pattern.

View Article and Find Full Text PDF

Members of the Rab GTPase family are master regulators of vesicle trafficking. When disregulated, they are associated with a number of pathological states. The inhibition of RGGT, an enzyme responsible for post-translational geranylgeranylation of Rab GTPases represents one way to control the activity of these proteins.

View Article and Find Full Text PDF

A bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications.

View Article and Find Full Text PDF

Fourteen novel prodrug-like analogs of two highly ionic phosphonocarboxylate inhibitors of Rab geranylgeranyl transferase were synthesized and preliminary assessment of their chemical and enzymatic stability was evaluated in buffers (pH 6.5 and 7.4) and rat intestinal homogenate (pH 6.

View Article and Find Full Text PDF

Phosphonocarboxylate (PC) analogs of the anti-osteoporotic drugs, bisphosphonates, represent the first class of selective inhibitors of Rab geranylgeranyl transferase (RabGGTase, RGGT), an enzyme implicated in several diseases including ovarian, breast and skin cancer. Here we present the synthesis and biological characterization of an extended set of this class of compounds, including lipophilic derivatives of the known RGGT inhibitors. From this new panel of PCs, we have identified an inhibitor of RGGT that is of similar potency as the most active published phosphonocarboxylate, but of higher selectivity towards this enzyme compared to prenyl pyrophosphate synthases.

View Article and Find Full Text PDF

The first experimental proof of the course of silylation in the McKenna reaction, one of the most widely used reactions for the synthesis of organophosphorus acids, is presented. The reaction (in acetonitrile) proceeds via an attack of the terminal oxygen from the dialkyl phosphonate on the silicon atom in bromotrimethylsilane. Isotopically enriched diethyl phenylphosphonates (P═(17)O or P═(18)O) were used as the model compounds.

View Article and Find Full Text PDF

Influenza A virus infects 5-20% of the population annually, resulting in ~35,000 deaths and significant morbidity. Current treatments include vaccines and drugs that target viral proteins. However, both of these approaches have limitations, as vaccines require yearly development and the rapid evolution of viral proteins gives rise to drug resistance.

View Article and Find Full Text PDF

Bisphosphonates are widely used antiresorptive drugs that bind to calcium. It has become evident that these drugs have differing affinities for bone mineral; however, it is unclear whether such differences affect their distribution on mineral surfaces. In this study, fluorescent conjugates of risedronate, and its lower-affinity analogues deoxy-risedronate and 3-PEHPC, were used to compare the localization of compounds with differing mineral affinities in vivo.

View Article and Find Full Text PDF

Progress in the synthesis of novel fluorescent conjugates of N-heterocyclic bisphosphonate drugs and related analogues, together with some recent applications of these compounds as imaging probes, are briefly discussed.

View Article and Find Full Text PDF

Phosphonocarboxylate (PC) analogues of bisphosphonates are of interest due to their selective inhibition of a key enzyme in the mevalonate pathway, Rab geranylgeranyl transferase (RGGT). The dextrarotatory enantiomer of 2-hydroxy-3-(imidazo[1,2-a]pyridin-3-yl)-2-phosphonopropanoic acid (3-IPEHPC, 1) is the most potent PC-type RGGT inhibitor thus far identified. The absolute configuration of (+)-1 in the active site complex has remained unknown due to difficulties in obtaining RGGT inhibitor complex crystals suitable for X-ray diffraction analysis.

View Article and Find Full Text PDF

A series of 15 mostly new dialkoxyphosphoryl alkyl and aralkyl isothiocyanates were synthesized using two alternative strategies, and their in vitro antiproliferative activity against several cancer cell lines (including drug resistant) is here demonstrated. The IC(50) values measured for the new compounds are within the range of 6.3-21.

View Article and Find Full Text PDF

Under certain conditions, the phosphonocarboxylate analogue (3) of the bisphosphonate drug minodronate (4) in contact with borosilicate glassware reversibly forms an isolable dimer complex of boron, as revealed by the X-ray crystallographic structure of the (R,R/S,S) complex and supported by NMR and HRMS data.

View Article and Find Full Text PDF

Bisphosphonates are effective antiresorptive agents owing to their bone-targeting property and ability to inhibit osteoclasts. It remains unclear, however, whether any non-osteoclast cells are directly affected by these drugs in vivo. Two fluorescent risedronate analogues, carboxyfluorescein-labeled risedronate (FAM-RIS) and Alexa Fluor 647-labeled risedronate (AF647-RIS), were used to address this question.

View Article and Find Full Text PDF