Publications by authors named "Katarzyna Baginska"

Background: Possible relationships between gut dysbiosis and breast cancer (BC) development and progression have been previously reported. However, the results of these metagenomics studies are inconsistent. Our study involved 88 patients diagnosed with breast cancer and 86 cancer-free control women.

View Article and Find Full Text PDF

Introduction: Low diversity gut dysbiosis can take different forms depending on the disease context. In this study, we used shotgun metagenomic sequencing and gas chromatography-mass spectrometry (GC-MS) to compared the metagenomic and metabolomic profiles of diarrheal cancer and inflammatory bowel disease (IBD) patients and defined the additive effect of infection (CDI) on intestinal dysbiosis.

Results: The study cohort consisted of 138 case-mix cancer patients, 43 IBD patients, and 45 healthy control individuals.

View Article and Find Full Text PDF
Article Synopsis
  • Esports players' gut microbiota was studied for the first time, comparing them to endurance athletes and physical education students.
  • Results showed no overall differences in bacterial diversity or short-chain fatty acids between esports players and students, but 18 specific bacteria and amino acids did differ.
  • Intense exercise significantly impacts gut microbiota, but lifestyle differences between esports players and students have minimal effects on gut composition.
View Article and Find Full Text PDF

We present results of conformational studies by Circular dichroism and NMR spectroscopy, differential scanning calorimetry, and molecular dynamics, of three alanine-based peptides: Ac-KK-(A)(7)-KK-NH(2) (KAK), Ac-OO-(A)(7)-DD-NH(2) (OAD), and Ac-KK-(A)(7)-EE-NH(2) (KAE), where A, K, O, D, and E, denote alanine, lysine, ornithine, aspartic acid, and glutamic acid residues, respectively. For OAD and KAE, canonical MD simulations with time-averaged NMR-derived restraints demonstrate the presence of an ensemble of structures with a variety of conformational states (polyproline II, alpha-helical, alpha', and extended, turn); for KAK the conformational states are predominantly polyproline II and extended. The OAD peptide exhibits a bent shape with its ends close to each other, whereas KAK and KAE are more extended.

View Article and Find Full Text PDF

The purpose of this work was to evaluate the effect of the nature of the ionizable end groups, and the solvent, on their acid-base properties in alanine-based peptides. Hence, the acid-base properties of three alanine-based peptides: Ac-KK-(A)(7)-KK-NH(2) (KAK), Ac-OO-(A)(7)-DD-NH(2) (OAD), Ac-KK-(A)(7)-EE-NH(2) (KAE), where A, D, E, K, and O denote alanine, aspartic acid, glutamic acid, lysine, and ornithine, respectively, were determined in water and in methanol by potentiometry. With the availability of these data, the ability of two theoretical methods to simulate pH-metric titration of those peptides was assessed: (i) the electrostatically driven Monte Carlo method with the ECEPP/3 force field and the Poisson-Boltzmann approach to compute solvation energy (EDMC/PB/pH), and (ii) the molecular dynamics method with the AMBER force field and the Generalized Born model (MD/GB/pH).

View Article and Find Full Text PDF

The circular dichroism (CD) and Fourier transform infrared (FTIR) methods were applied to the conformational studies of alanine-rich peptide Ac-K-[A]11-KGGY-NH2 (where K is lysine, A is alanine, G is glycine and Y is tyrozyne) in water, methanol (MeOH) and trifluoroethanol (TFE). The analysis of CD-spectra of the peptide in water at different concentrations revealed that the secondary structure content depends on the peptide concentration and pH of the solution. The increase of the peptide concentration causes a decrease of alpha-helix content and, simultaneously, an increase of beta-sheet structure, while the unordered structure is the predominant one.

View Article and Find Full Text PDF

It has been suggested that the alanine-based peptide with sequence Ac-XX-[A](7)-OO-NH(2), termed XAO where X denotes diaminobutyric acid and O denotes ornithine, exists in a predominantly polyproline-helix (P(II)) conformation in aqueous solution. In our recent work, we demonstrated that this "polyproline conformation" should be regarded as a set of local conformational states rather than as the overall conformation of the molecule. In this work, we present further evidence to support this statement.

View Article and Find Full Text PDF

We compared the ability of two theoretical methods of pH-dependent conformational calculations to reproduce experimental potentiometric titration curves of two models of peptides: Ac-K5-NHMe in 95% methanol (MeOH)/5% water mixture and Ac-XX(A)7OO-NH2 (XAO) (where X is diaminobutyric acid, A is alanine, and O is ornithine) in water, methanol (MeOH), and dimethyl sulfoxide (DMSO), respectively. The titration curve of the former was taken from the literature, and the curve of the latter was determined in this work. The first theoretical method involves a conformational search using the electrostatically driven Monte Carlo (EDMC) method with a low-cost energy function (ECEPP/3 plus the SRFOPT surface-solvation model, assumming that all titratable groups are uncharged) and subsequent reevaluation of the free energy at a given pH with the Poisson-Boltzmann equation, considering variable protonation states.

View Article and Find Full Text PDF

The alanine-based peptide Ac-XX(A)7OO-NH2, referred to as XAO (where X, A, and O denote diaminobutyric acid, alanine, and ornithine, respectively), has recently been proposed to possess a well defined polyproline II (P(II)) conformation at low temperatures. Based on the results of extensive NMR and CD investigations combined with theoretical calculations, reported here, we present evidence that, on the contrary, this peptide does not have any significant amount of organized P(II) structure but exists in an ensemble of conformations with a distorted bend in the N- and C-terminal regions. The conformational ensemble was obtained by molecular dynamics/simulated annealing calculations using the amber suite of programs with time-averaged distance and dihedral-angle restraints obtained from rotating-frame nuclear Overhauser effect (ROE) volumes and vicinal coupling constants 3J(HN Eta alpha), respectively.

View Article and Find Full Text PDF

We assessed the correlation between charge distribution and conformation of flexible peptides by comparing the theoretically calculated potentiometric-titration curves of two model peptides, Ac-Lys5-NHMe (a model of poly-L-lysine) and Ac-Lys-Ala11-Lys-Gly2-Tyr-NH2 (P1) in water and methanol, with the experimental curves. The calculation procedure consisted of three steps: (i) global conformational search of the peptide under study using the electrostatically driven Monte Carlo (EDMC) method with the empirical conformational energy program for peptides (ECEPP)/3 force field plus the surface-hydration (SRFOPT) or the generalized Born surface area (GBSA) solvation model as well as a molecular dynamics method with the assisted model building and energy refinement (AMBER)99/GBSA force field; (ii) reevaluation of the energy in the pH range considered by using the modified Poisson-Boltzmann approach and taking into account all possible protonation microstates of each conformation, and (iii) calculation of the average degree of protonation of the peptide at a given pH value by Boltzmann averaging over conformations. For Ac-Lys5-NHMe, the computed titration curve agrees qualitatively with the experimental curve of poly-L-lysine in 95% methanol.

View Article and Find Full Text PDF