The E3 ligase E6AP/UBE3A has a dedicated binding site in the 26S proteasome provided by the RAZUL domain of substrate receptor hRpn10/S5a/PSMD4. Guided by RAZUL sequence similarity, we test and demonstrate here that the E6AP AZUL binds transiently to the UBA of proteasomal shuttle factor UBQLN1/2. Despite a weak binding affinity, E6AP AZUL is recruited to UBQLN2 biomolecular condensates in vitro and E6AP interacts with UBQLN1/2 in cellulo.
View Article and Find Full Text PDFT cells engineered to express artificial chimeric antigen receptors (CARs) that selectively target tumor-specific antigens or deleterious cell types offer transformative therapeutic possibilities. CARs contain an N-terminal extracellular antigen recognition domain, C-terminal intracellular signal transduction domains, and connecting hinge and transmembrane regions, each of which have been varied to optimize targeting and minimize toxicity. We find that a CD22-targeting CAR harboring a CD8α hinge (H) exhibits greater cytotoxicity against a low antigen density CD22 leukemia as compared to an equivalent CAR with a CD28 H.
View Article and Find Full Text PDFThe tripartite-motif protein, TRIM5α, is an innate immune sensor that potently restricts retrovirus infection by binding to human immunodeficiency virus capsids. Higher-ordered oligomerization of this protein forms hexagonally patterned structures that wrap around the viral capsid, despite an anomalously low affinity for the capsid protein (CA). Several studies suggest TRIM5α oligomerizes into a lattice with a symmetry and spacing that matches the underlying capsid, to compensate for the weak affinity, yet little is known about how these lattices form.
View Article and Find Full Text PDFTRIM5α is a restriction factor that senses incoming retrovirus cores through an unprecedented mechanism of nonself recognition. TRIM5α assembles a hexagonal lattice that avidly binds the capsid shell, which surrounds and protects the virus core. The extent to which the TRIM lattice can cover the capsid and how TRIM5α directly contacts the capsid surface have not been established.
View Article and Find Full Text PDFMuRF1 (TRIM63) is a RING-type E3 ubiquitin ligase with a predicted tripartite TRIM fold. TRIM proteins rely upon the correct placement of an N-terminal RING domain, with respect to C-terminal, specific substrate-binding domains. The TRIM domain organization is orchestrated by a central helical domain that forms an antiparallel coiled-coil motif and mediates the dimerization of the fold.
View Article and Find Full Text PDFRestriction factors are important components of intrinsic cellular defense mechanisms against viral pathogens. TRIM5α is a restriction factor that intercepts the incoming capsid cores of retroviruses such as HIV and provides an effective species-specific barrier to retroviral infection. The TRIM5α SPRY domain directly binds the capsid with only very weak, millimolar-level affinity, and productive capsid recognition therefore requires both TRIM5α dimerization and assembly of the dimers into a multivalent hexagonal lattice to promote avid binding.
View Article and Find Full Text PDFYeast use the ring-shaped Dam1 complex to slide down depolymerizing microtubules to move chromosomes, but current models suggest that other eukaryotes do not have a sliding ring. We visualized Ndc80 and Ska complexes on microtubules by electron microscopic tomography to identify the structure of the human kinetochore-microtubule attachment. Ndc80 recruits the Ska complex so that the V shape of the Ska dimer interacts along protofilaments.
View Article and Find Full Text PDF