Circulating tumor cells (CTCs) travel through the vasculature to seed secondary sites and serve as direct precursors of metastatic outgrowth for many solid tumors. Heterotypic cell clusters form between CTCs and white blood cells (WBCs) and recent studies report that a majority of these WBCs are neutrophils in patient and mouse models. The lab discovered that CTCs produce tubulin-based protrusions, microtentacles (McTNs), which promote reattachment, retention in distant sites during metastasis and formation of tumor cell clusters.
View Article and Find Full Text PDFLevels of hydrogen peroxide are highly elevated in the breast tumor microenvironment compared to normal tissue. Production of hydrogen peroxide is implicated in the mechanism of action of many anticancer therapies. Several lines of evidence suggest hydrogen peroxide mediates breast carcinogenesis and metastasis, though the molecular mechanism remains poorly understood.
View Article and Find Full Text PDFThe tumor microenvironment and wound healing after injury both contain extremely high concentrations of the extracellular signaling molecule, adenosine triphosphate (ATP) compared to normal tissue. P2Y2 receptor, an ATP-activated purinergic receptor, is typically associated with pulmonary, endothelial, and neurological cell signaling. Here we report its role and importance in breast epithelial cell signaling and how it is altered in metastatic breast cancer.
View Article and Find Full Text PDFCytoskeletal remodeling in circulating tumor cells (CTCs) facilitates metastatic spread. Previous oncology studies examine sustained aberrant calcium (Ca) signaling and cytoskeletal remodeling scrutinizing long-term phenotypes such as tumorigenesis and metastasis. The significance of acute Ca signaling in tumor cells that occur within seconds to minutes is overlooked.
View Article and Find Full Text PDFPost-translational modifications (PTMs) of the microtubule network impart differential functions across normal cell types and their cancerous counterparts. The removal of the C-terminal tyrosine of α-tubulin (deTyr-Tub) as performed by the tubulin carboxypeptidase (TCP) is of particular interest in breast epithelial and breast cancer cells. The recent discovery of the genetic identity of the TCP to be a vasohibin () coupled with a small vasohibin-binding protein () allows for the functional effect of this tubulin PTM to be directly tested for the first time.
View Article and Find Full Text PDFModulating the expression or function of the enigmatic MYC protein has demonstrated efficacy in an array of cancer types and a marked potential therapeutic index and safety profile. Despite its high therapeutic value, specific and selective inhibitors or downregulating therapeutics have proven difficult to develop. In the current study, we expanded our work on a MYC promoter G-quadruplex (G4) stabilizing DNA clamp to develop an oligonucleotide interfering DNA (DNAi) therapeutic.
View Article and Find Full Text PDFMammosphere assays are widely used in vitro to identify prospective cancer-initiating stem cells that can propagate clonally to form spheres in free-floating conditions. However, the traditional mammosphere assay inevitably introduces cell aggregation that interferes with the measurement of true mammosphere forming efficiency. We developed a method to reduce tumor cell aggregation and increase the probability that the observed mammospheres formed are clonal in origin.
View Article and Find Full Text PDFChanges in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism.
View Article and Find Full Text PDFThe metastatic cascade consists of multiple complex steps, but the belief that it is a linear process is diminishing. In order to metastasize, cells must enter the blood vessels or body cavities (depending on the cancer type) via active or passive mechanisms. Once in the bloodstream and/or lymphatics, these cancer cells are now termed circulating tumor cells (CTCs).
View Article and Find Full Text PDFMembrane hyaluronidase Hyal-2 supports cancer cell growth. Inhibition of Hyal-2 by specific antibody against Hyal-2 or pY216-Hyal-2 leads to cancer growth suppression and prevention in vivo. By immunoelectron microscopy, tumor suppressor WWOX is shown to be anchored, in part, in the cell membrane by Hyal-2.
View Article and Find Full Text PDFMechanisms of activation, signaling, and trafficking of adhesion G protein-coupled receptors (aGPCRs) have remained largely unknown. Several aGPCRs, including GPR56/ADGRG1 and GPR64/ADGRG2, show increased activity in the absence of their N-terminal fragment (NTF). This constitutive signaling is plausibly caused by the binding of extracellular N-terminal 15-25 amino acid-long tethered agonist to extracellular domains of the cognate aGPCRs.
View Article and Find Full Text PDF