Publications by authors named "Katarina Rebrosova"

Pathogenic microbes contribute to several major global diseases that kill millions of people every year. Bloodstream infections caused by these microbes are associated with high morbidity and mortality rates, which are among the most common causes of hospitalizations. The search for the "Holy Grail" in clinical diagnostic microbiology, a reliable, accurate, low cost, real-time, and easy-to-use diagnostic method, is one of the essential issues in clinical practice.

View Article and Find Full Text PDF

Introduction: naturally colonizes the human skin but as an opportunistic pathogen, it can also cause biofilm-associated infections and bloodstream infections in newborns. Previously, we found that two strains from the subspecies subsp. produce yellow carotenoids despite the initial species description, reporting this subspecies as non-pigmented.

View Article and Find Full Text PDF

Melanins are complex pigments with various biological functions and potential applications in space exploration and biomedicine due to their radioprotective properties. Aspergillus niger, a fungus known for its high radiation resistance, is widely used in biotechnology and a candidate for melanin production. In this study, we investigated the production of fungal pyomelanin (Pyo) in by inducing overproduction of the pigment using L-tyrosine in a recombinant Δ mutant strain (OS4.

View Article and Find Full Text PDF

The search for the "Holy Grail" in clinical diagnostic microbiology-a reliable, accurate, low-cost, real-time, easy-to-use method-has brought up several methods with the potential to meet these criteria. One is Raman spectroscopy, an optical, nondestructive method based on the inelastic scattering of monochromatic light. The current study focuses on the possible use of Raman spectroscopy for identifying microbes causing severe, often life-threatening bloodstream infections.

View Article and Find Full Text PDF

Efficient separation and sensitive identification of pathogenic bacterial strains is essential for a prosperous modern society, with direct applications in medical diagnostics, drug discovery, biodefense, and food safety. We developed a fast and reliable method for antibody-based selective immobilization of bacteria from suspension onto a gold-plated glass surface, followed by detection using strain-specific antibodies linked to gold nanoparticles decorated with a reporter molecule. The reporter molecules are subsequently detected by surface-enhanced Raman spectroscopy (SERS).

View Article and Find Full Text PDF

Rapid and accurate identification of pathogens causing infections is one of the biggest challenges in medicine. Timely identification of causative agents and their antimicrobial resistance profile can significantly improve the management of infection, lower costs for healthcare, mitigate ever-growing antimicrobial resistance and in many cases, save lives. Raman spectroscopy was shown to be a useful-quick, non-invasive, and non-destructive -tool for identifying microbes from solid and liquid media.

View Article and Find Full Text PDF

Urinary tract infections belong to the most common infections in the world. Besides community-acquired infections, nosocomial infections pose a high risk especially for patients having indwelling catheters, undergoing urological surgeries or staying at hospital for prolonged time. They can be often complicated by antimicrobial resistance and/or biofilm formation.

View Article and Find Full Text PDF

Finding rapid, reliable diagnostic methods is a big challenge in clinical microbiology. Raman spectroscopy is an optical method used for multiple applications in scientific fields including microbiology. This work reports its potential in identifying biofilm positive strains of and .

View Article and Find Full Text PDF

Clinical treatment of the infections caused by various staphylococcal species differ depending on the actual cause of infection. Therefore, it is necessary to develop a fast and reliable method for identification of staphylococci. Raman spectroscopy is an optical method used in multiple scientific fields.

View Article and Find Full Text PDF

Aim: Raman spectroscopy is an analytical method with a broad range of applications across multiple scientific fields. We report on a possibility to differentiate between two important Gram-positive species commonly found in clinical material - Staphylococcus aureus and Staphylococcus epidermidis - using this rapid noninvasive technique.

Materials & Methods: For this, we tested 87 strains, 41 of S.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbu99vtg2v29ffqhb7hs6o8uqldom4k6r): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once