Publications by authors named "Katarina Piculjan"

Invited for the cover of this issue is Josip Požar with collaborators from the University of Zagreb. The image depicts the differences in high- and low-temperature water effect on the complexation thermodynamics of adamantyl mannoside with β-cyclodextrin. Read the full text of the article at 10.

View Article and Find Full Text PDF

The effects of solvent and temperature on the complexation of adamantyl mannoside with β-cyclodextrin and 6-O-monotosyl-6-deoxy-β-cyclodextrin were explored experimentally and by means of molecular dynamics simulations. Efficient binding was observed only in hydrogen-bonded solvents, which indicated solvophobically driven complexation. The stability of the inclusion complex was considerably higher in aqueous media.

View Article and Find Full Text PDF

Cation complexation in water presents a unique challenge in calixarene chemistry, mostly due to the fact that a vast majority of calixarene-based cation receptors is not soluble in water or their solubility has been achieved by introducing functionalities capable of (de)protonation. Such an approach inevitably involves the presence of counterions which compete with target cations for the calixarene binding site, and also rather often requires the use of ion-containing buffer solutions in order to control the pH. Herein we devised a new strategy towards the solution of this problem, based on introducing carbohydrate units at the lower or upper rim of calix[4]arenes which comprise efficient cation binding sites.

View Article and Find Full Text PDF

The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases.

View Article and Find Full Text PDF