Rare or novel missense variants in large genes such as TTN and NEB are frequent in the general population, which hampers the interpretation of putative disease-causing biallelic variants in patients with sporadic neuromuscular disorders. Often, when the first initial genetic analysis is performed, the reconstructed haplotype, i.e.
View Article and Find Full Text PDFPatients with myopathies caused by pathogenic variants in tropomyosin genes TPM2 and TPM3 usually have muscle hypotonia and weakness, their muscle biopsies often showing fibre size disproportion and nemaline bodies. Here, we describe a series of patients with hypercontractile molecular phenotypes, high muscle tone, and mostly non-specific myopathic biopsy findings without nemaline bodies. Three of the patients had trismus, whilst in one patient, the distal joints of her fingers flexed on extension of the wrists.
View Article and Find Full Text PDFWe describe three patients with asymmetric congenital myopathy without definite nemaline bodies and one patient with severe nemaline myopathy. In all four patients, the phenotype had been caused by pathogenic missense variants in ACTA1 leading to the same amino acid change, p.(Gly247Arg).
View Article and Find Full Text PDFBackground: Pathogenic variants in the TPM3 gene, encoding slow skeletal muscle α-tropomyosin account for less than 5% of nemaline myopathy cases. Dominantly inherited or de novo missense variants in TPM3 are more common than recessive loss-of-function variants. The recessive variants reported to date seem to affect either the 5' or the 3' end of the skeletal muscle-specific TPM3 transcript.
View Article and Find Full Text PDFIntragenic segmental duplication regions are potential hotspots for recurrent copy number variation and possible pathogenic aberrations. Two large sarcomeric genes, nebulin and titin, both contain such segmental duplication regions. Using our custom Comparative Genomic Hybridisation array, we have previously shown that a gain or loss of more than one copy of the repeated block of the nebulin triplicate region constitutes a recessive pathogenic mutation.
View Article and Find Full Text PDFThe human genome contains repetitive regions, such as segmental duplications, known to be prone to copy number variation. Segmental duplications are highly identical and homologous sequences, posing a specific challenge for most mutation detection methods. The giant nebulin gene is expressed in skeletal muscle.
View Article and Find Full Text PDFWe report the first mosaic mutation, a deletion of exons 11-107, identified in the nebulin gene in a Finnish patient presenting with a predominantly distal congenital myopathy and asymmetric muscle weakness. The female patient is ambulant and currently 26 years old. Muscle biopsies showed myopathic features with type 1 fibre predominance, strikingly hypotrophic type 2 fibres and central nuclei, but no nemaline bodies.
View Article and Find Full Text PDFGohlke et al. show the importance of nebulin size for optimal skeletal muscle function in animals of different body size.
View Article and Find Full Text PDFNemaline myopathies are a clinically and genetically heterogeneous group of congenital myopathies, mainly characterized by muscle weakness, hypotonia and respiratory insufficiency. Here, we report a male foetus of consanguineous parents with a severe congenital syndrome characterized by arthrogryposis detected at 13 weeks of gestation. We describe severe complex dysmorphic facial and musculoskeletal features by post mortem fetal examination confirming the prenatal diagnosis.
View Article and Find Full Text PDFNemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations.
View Article and Find Full Text PDFThe congenital myopathies form a large clinically and genetically heterogeneous group of disorders. Currently mutations in at least 27 different genes have been reported to cause a congenital myopathy, but the number is expected to increase due to the accelerated use of next-generation sequencing methods. There is substantial overlap between the causative genes and the clinical and histopathologic features of the congenital myopathies.
View Article and Find Full Text PDFWe report the first family with a dominantly inherited mutation of the nebulin gene (NEB). This ∼100 kb in-frame deletion encompasses NEB exons 14-89, causing distal nemaline/cap myopathy in a three-generation family. It is the largest deletion characterized in NEB hitherto.
View Article and Find Full Text PDFNebulin is a very large protein required for assembly of the contractile machinery in muscle. Mutations in the nebulin gene NEB are a common cause of nemaline myopathy. Nebulin mRNA is alternatively-spliced so that each mRNA contains either exon 143 or exon 144.
View Article and Find Full Text PDFIntroduction: Nebulin is a giant actin-binding protein in the thin filament of the skeletal muscle sarcomere. Studies of nebulin interactions are limited by the size, complexity, and poor solubility of the protein. We divided the nebulin super-repeat region into a super-repeat panel, and studied nebulin/actin interactions.
View Article and Find Full Text PDFObjective: Copy number variants (CNVs) were analyzed from next-generation sequencing data, with the aim of improving diagnostic yield in skeletal muscle disorder cases.
Methods: Four publicly available bioinformatic analytic tools were used to analyze CNVs from sequencing data from patients with muscle diseases. The patients were previously analyzed with a targeted gene panel for single nucleotide variants and small insertions and deletions, without achieving final diagnosis.
Background: Our previous array, the Comparative Genomic Hybridisation design (CGH-array) for nemaline myopathy (NM), named the NM-CGH array, revealed pathogenic copy number variation (CNV) in the genes for nebulin (NEB) and tropomyosin 3 (TPM3), as well as recurrent CNVs in the segmental duplication (SD), i.e. triplicate, region of NEB (TRI, exons 82-89, 90-97, 98-105).
View Article and Find Full Text PDFWe present here a Finnish nemaline myopathy family with a dominant mutation in the skeletal muscle α-actin gene, p.(Glu85Lys), segregating in three generations. The index patient, a 5-year-old boy, had the typical form of nemaline myopathy with congenital muscle weakness and motor milestones delayed but reached, while his mother never had sought medical attention for her very mild muscle weakness, and his maternal grandmother had been misdiagnosed as having myotonic dystrophy.
View Article and Find Full Text PDFObjective: Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation.
Methods: We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41.
Despite the expression of the mutated gene in all muscles, selective muscles are involved in genetic muscular dystrophies. Different muscular dystrophies show characteristic patterns of fatty degenerative changes by muscle imaging, even to the extent that the patterns have been used for diagnostic purposes. However, the underlying molecular mechanisms explaining the selective involvement of muscles are not known.
View Article and Find Full Text PDFRecently, new large variants have been identified in the nebulin gene (NEB) causing nemaline myopathy (NM). NM constitutes a heterogeneous group of disorders among the congenital myopathies, and disease-causing variants in NEB are a main cause of the recessively inherited form of NM. NEB consists of 183 exons and it includes homologous sequences such as a 32-kb triplicate region (TRI), where eight exons are repeated three times (exons 82-89, 90-97, 98-105).
View Article and Find Full Text PDFNemaline myopathy (NM) is a genetic muscle disorder characterized by muscle dysfunction and electron-dense protein accumulations (nemaline bodies) in myofibers. Pathogenic mutations have been described in 9 genes to date, but the genetic basis remains unknown in many cases. Here, using an approach that combined whole-exome sequencing (WES) and Sanger sequencing, we identified homozygous or compound heterozygous variants in LMOD3 in 21 patients from 14 families with severe, usually lethal, NM.
View Article and Find Full Text PDFA mutation update on the nebulin gene (NEB) is necessary because of recent developments in analysis methodology, the identification of increasing numbers and novel types of variants, and a widening in the spectrum of clinical and histological phenotypes associated with this gigantic, 183 exons containing gene. Recessive pathogenic variants in NEB are the major cause of nemaline myopathy (NM), one of the most common congenital myopathies. Moreover, pathogenic NEB variants have been identified in core-rod myopathy and in distal myopathies.
View Article and Find Full Text PDFBackground: Nemaline myopathy (NM) is a rare genetic muscle disorder, but one of the most common among the congenital myopathies. NM is caused by mutations in at least nine genes: Nebulin (NEB), α-actin (ACTA1), α-tropomyosin (TPM3), β-tropomyosin (TPM2), troponin T (TNNT1), cofilin-2 (CFL2), Kelch repeat and BTB (POZ) domain-containing 13 (KBTBD13), and Kelch-like family members 40 and 41 (KLHL40 and KLHL41). Nebulin is a giant (600 to 900 kDa) filamentous protein constituting part of the skeletal muscle thin filament.
View Article and Find Full Text PDF