Background: The cytokines TNF (TNFSF2) and IFNγ are important mediators of inflammatory bowel diseases and contribute to enhanced intestinal epithelial permeability by stimulating apoptosis and/or disrupting tight junctions. Apoptosis and tight junctions are also important for epithelial tissue morphogenesis, but the effect of TNF and IFNγ on the process of intestinal epithelial morphogenesis is unknown.
Methods/principal Findings: We have employed a three-dimensional cell culture system, reproducing in vivo-like multicellular organization of intestinal epithelial cells, to study the effect of TNF on intestinal epithelial morphogenesis and permeability.
The most common clinical tachycardia, Atrial Fibrillation (AF), is a progressive disease, caused by cardiomyocyte remodeling, which finally results in contractile dysfunction and AF persistence. Recently, we identified a protective role of heat shock proteins (HSPs), especially the small HSPB1 member, against tachycardia remodeling in experimental AF models. Our understanding of tachycardia remodeling and anti-remodeling drugs is currently hampered by the lack of suitable (genetic) manipulatable in vivo models for rapid screening of key targets in remodeling.
View Article and Find Full Text PDFBackground: We previously demonstrated the small heat shock protein, HSPB1, to prevent tachycardia remodeling in in vitro and in vivo models for Atrial Fibrillation (AF). To gain insight into its mechanism of action, we examined the protective effect of all 10 members of the HSPB family on tachycardia remodeling. Furthermore, modulating effects of HSPB on RhoA GTPase activity and F-actin stress fiber formation were examined, as this pathway was found of prime importance in tachycardia remodeling events and the initiation of AF.
View Article and Find Full Text PDFAngiotensin II can induce cardiac hypertrophy by stimulating the release of growth factors. ACE inhibitors reduce angiotensin II levels and cardiac hypertrophy, but their effects on the healthy heart are largely unexplored. We hypothesized that ACE inhibition decreases left ventricular mass in normotensive animals and that this is associated with altered expression of cardiac fetal genes, growth factors, and endothelial nitric oxide synthase (eNOS).
View Article and Find Full Text PDF