Dysregulated bone morphogenetic protein (BMP) signaling in endothelial cells (ECs) is implicated in vascular diseases such as pulmonary arterial hypertension (PAH). Here, we showed that the transcription factor ATOH8 was a direct target of SMAD1/5 and was induced in a manner dependent on BMP but independent of Notch, another critical signaling pathway in ECs. In zebrafish and mice, inactivation of did not cause an arteriovenous malformation-like phenotype, which may arise because of dysregulated Notch signaling.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) signaling exerts paradoxical roles in pluripotent stem cells (PSCs); it sustains self-renewal of mouse embryonic stem cells (ESCs), while it induces differentiation in other PSCs, including human ESCs. Here, we revisit the roles of BMP-4 using mouse ESCs (mESCs) in naive and primed states. SMAD1 and SMAD5, which transduce BMP signals, recognize enhancer regions together with KLF4 and KLF5 in naive mESCs.
View Article and Find Full Text PDFChondroitin/dermatan sulfate (CS/DS) proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented.
View Article and Find Full Text PDFBackground: Chondroitin/dermatan sulfate (CS/DS) proteoglycans present in the extracellular matrix have important structural and regulatory functions.
Results: Six human genes have previously been shown to catalyze CS/DS polymerization. Here we show that one of these genes, chpf, is represented by two copies in the zebrafish genome, chpfa and chpfb, while the other five human CS/DS glycosyltransferases csgalnact1, csgalnact2, chpf2, chsy1, and chsy3 all have single zebrafish orthologues.
The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation of the common proteoglycan linkage tetrasaccharide were analyzed along with ext2 and extl3 mutants, predicted to have defective HS polymerization. Notably, the effects on HS and CS biosynthesis in the respective mutant strains were shown to differ from what had been hypothesized.
View Article and Find Full Text PDFObjective: Heparan sulfate proteoglycans regulate key steps of blood vessel formation. The present study was undertaken to investigate if there is a functional overlap between heparan sulfate proteoglycans and chondroitin sulfate proteoglycans during sprouting angiogenesis.
Methods And Results: Using cultures of genetically engineered mouse embryonic stem cells, we show that angiogenic sprouting occurs also in the absence of heparan sulfate biosynthesis.
Heparan sulfate proteoglycans, present on cell surfaces and in the extracellular matrix, interact with growth factors and morphogens to influence growth and differentiation of cells. The sulfation pattern of the heparan sulfate chains formed during biosynthesis in the Golgi compartment will determine the interaction potential of the proteoglycan. The glucosaminyl N-deacetylase/N-sulfotransferase (NDST) enzymes have a key role during biosynthesis, greatly influencing total sulfation of the heparan sulfate chains.
View Article and Find Full Text PDFDeficiency of the heparan sulfate biosynthesis enzyme N-deacetylase/N-sulfotransferase 1 (NDST1) in mice causes severely disturbed heparan sulfate biosynthesis in all organs, whereas lack of NDST2 only affects heparin biosynthesis in mast cells (MCs). To investigate the individual and combined roles of NDST1 and NDST2 during MC development, in vitro differentiated MCs derived from mouse embryos and embryonic stem cells, respectively, have been studied. Whereas MC development will not occur in the absence of both NDST1 and NDST2, lack of NDST2 alone results in the generation of defective MCs.
View Article and Find Full Text PDFEmbryonic stem (ES) cells continuously decide whether to maintain pluripotency or differentiate. While exogenous leukemia inhibitory factor and BMP4 perpetuate a pluripotent state, less is known about the factors initiating differentiation. We show that heparan sulfate (HS) proteoglycans are critical coreceptors for signals inducing ES cell differentiation.
View Article and Find Full Text PDFSeveral receptor tyrosine kinases require heparan sulfate proteoglycans (HSPGs) as coreceptors for efficient signal transduction. We have studied the role of HSPGs in the development of blood capillary structures from embryonic stem cells, a process strictly dependent on signaling via vascular endothelial growth factor receptor-2 (VEGFR-2). We show, by using chimeric cultures of embryonic stem cells defective in either HS production or VEGFR-2 synthesis, that VEGF signaling in endothelial cells is fully supported by HS expressed in trans by adjacent perivascular smooth muscle cells.
View Article and Find Full Text PDFHeparan sulfate structure differs significantly between various cell types and during different developmental stages. The diversity is created during biosynthesis by sulfotransferases, which add sulfate groups to the growing chain, and a C5-epimerase, which converts selected glucuronic acid residues to iduronic acid. All these modifications are believed to depend on initial glucosamine N-sulfation carried out by the enzyme glucosaminyl N-deacetylase/N-sulfotransferase (NDST).
View Article and Find Full Text PDFHeparan sulfates (HSs) are N- and O-sulfated polysaccharide components of proteoglycans, which are important constituents of the cell surface as well as the extracellular matrix. Heparin, with extensive clinical application as an anticoagulant, is a highly sulfated form of HS present within the granules of connective tissue type mast cells. The diverse functions of HS, which include the modulation of growth factor/cytokine activity, interaction with matrix proteins and binding of enzymes to cell surfaces, depend greatly on the presence of specific, high affinity regions on the chains.
View Article and Find Full Text PDF