Background: Triggering receptor expressed on myeloid cells 1 (TREM-1) is a potent amplifier of inflammation. Recently, the antimicrobial peptide PGLYRP-1 was shown to be the ligand of TREM-1. Here, the ability of an anti-TREM-1 antibody to dampen the release of proinflammatory cytokines by colon lamina propria cells (LPCs) from patients with IBD was investigated and correlated with PGLYRP-1 levels.
View Article and Find Full Text PDFHuman cystatin C, a member of the cysteine proteinase-inhibitory family, is produced by all nucleated cells and has important roles in regulating natural immunity. Nematode homologs to human cystatin C have been shown to have anti-inflammatory effects on monocytes and to reduce colitis in mice. In Crohn's disease, pathogenic activated monocytes help drive inflammatory processes via the release of proinflammatory cytokines and chemokines.
View Article and Find Full Text PDFHuman monocytes are a heterogeneous cell population classified into three different subsets: Classical CD14++CD16-, intermediate CD14++CD16+, and non-classical CD14+CD16++ monocytes. These subsets are distinguished by their differential expression of CD14 and CD16, and unique gene expression profile. So far, the variation in inter-cellular gene expression within the monocyte subsets is largely unknown.
View Article and Find Full Text PDFHereditary cystatin C amyloid angiopathy is an autosomal dominant disorder in which a variant form of cystatin C (L68Q) readily forms amyloid deposits in cerebral arteries in affected individuals resulting in early death. L68Q protein deposits in human cystatin C amyloid angiopathy patients have also been found in tissues outside of the brain including the testis, suggesting possible effects on fertility. Heterozygous transgenic mice (L68Q) that express the human L68Q variant of cystatin C under the control of the mouse cystatin C promoter were unable to generate offspring, suggesting the presence of L68Q cystatin C amyloid affected sperm function.
View Article and Find Full Text PDFIntestinal M play an important role in maintaining gut homeostasis. However, little is known about these cells, their precursors, and their role in intestinal inflammation. Here, we characterize the CD14(+) mononuclear cell populations in intestinal mucosa and blood in patients with CD.
View Article and Find Full Text PDFCD161 is a C-type lectin-like receptor expressed on human natural killer (NK) cells and subsets of T cells. CD161 has been described as an inhibitory receptor that regulates NK cell-mediated cytotoxicity and IFN-γ production. Its role on T cells has remained unclear.
View Article and Find Full Text PDFIntroduction: Collagen-induced arthritis (CIA) is a mouse model for rheumatoid arthritis (RA) and is induced after immunization with type II collagen (CII). CIA, like RA, is an autoimmune disease leading to destruction of cartilage and joints, and both the priming and inflammatory phases have been suggested to be dependent on proteases. In particular, the cysteine proteases have been proposed to be detrimental to the arthritic process and even immunomodulatory.
View Article and Find Full Text PDFSince the late 1980s, a worldwide increase of severe Streptococcus pyogenes infections has been associated with strains of the M1 serotype, strains which all secrete the streptococcal inhibitor of complement-mediated lysis (SIC). Previous work has shown that SIC blocks complement-mediated haemolysis, inhibits the activity of antibacterial peptides and has affinity for the human plasma proteins clusterin and histidine-rich glycoprotein; the latter is a member of the cystatin protein family. The present work demonstrates that SIC binds to cystatin C, high-molecular-mass kininogen (HK) and low-molecular-mass kininogen, which are additional members of this protein family.
View Article and Find Full Text PDFBrain damaging insults cause alterations in neuronal networks that trigger epileptogenesis, and eventually lead to the appearance of spontaneous seizures. The present experiments were designed to study the cellular expression and functions of a cysteine proteinase inhibitor, cystatin C, whose gene expression is previously shown to be upregulated in the rat hippocampus during status epilepticus (SE)-induced epileptogenesis. The present data showed that the expression of cystatin C protein increased in the mouse hippocampus 7 days following SE and localized mainly to astrocytes and microglia.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
October 2005
Objective: Degradation of extracellular matrix plays an important role in growth and destabilization of atherosclerotic plaques. Cystatin C, inhibitor of the collagen- and elastin-degrading cysteine proteases of the cathepsin family, is produced by virtually all cell types. It is present in the normal artery wall but severely reduced in human atherosclerotic lesions.
View Article and Find Full Text PDFMatrix remodelling plays an important role in regulating plaque stability. Cystatin C, an inhibitor of the elastin-degrading cysteine proteases of the cathepsin family, is believed to be one of the key protease inhibitors in this process. The aim of the present study was to investigate the role of leukocyte-specific cystatin C expression under conditions that favour plaque regression.
View Article and Find Full Text PDFBackground: As a secreted protein, cystatin C is assumed to play its role in the extracellular compartment, where it can inhibit virtually all cysteine proteases of families C1 (cathepsin B, L, S) and C13 (mammalian legumain-related proteases). Since many of its potential target enzymes in the eye reside in intracellular compartments, we sought evidence for a cellular uptake of the inhibitor in ocular tissues.
Methods: Fluorescence-labeled human cystatin C was injected intravitreally into normal rat eyes.
Purpose: Cystatin C is a mammalian cysteine protease inhibitor. This study describes the localization of cystatin C in the anterior segment of normal rat and mouse eyes. Cysteine proteases play an important role in protein degradation (e.
View Article and Find Full Text PDFDendritic cells (DC) undergo complex developmental changes during maturation. The MHC class II (MHC II) molecules of immature DC accumulate in intracellular compartments, but are expressed at high levels on the plasma membrane upon DC maturation. It has been proposed that the cysteine protease inhibitor cystatin C (CyC) plays a pivotal role in the control of this process by regulating the activity of cathepsin S, a protease involved in removal of the MHC II chaperone Ii, and hence in the formation of MHC II-peptide complexes.
View Article and Find Full Text PDF