Publications by authors named "Katarina Cˇufar"

With ongoing global warming, increasing water deficits promote physiological stress on forest ecosystems with negative impacts on tree growth, vitality, and survival. How individual tree species will react to increased drought stress is therefore a key research question to address for carbon accounting and the development of climate change mitigation strategies. Recent tree-ring studies have shown that trees at higher latitudes will benefit from warmer temperatures, yet this is likely highly species-dependent and less well-known for more temperate tree species.

View Article and Find Full Text PDF

As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues.

View Article and Find Full Text PDF
Article Synopsis
  • The future performance of European beech trees is uncertain due to their sensitivity to drought, and there is limited understanding of how climate change impacts their drought vulnerability across different regions.
  • The study uses a drought index to analyze how drought sensitivity of beech’s secondary growth varies over time, revealing that sensitivity is higher in dry environments and can be influenced by climatic conditions as well as tree competition within forests.
  • Results indicate that during severe droughts, beech growth may become less connected to climatic factors, suggesting a potential decline in drought tolerance and highlighting the complexity of the species' response to climate change.
View Article and Find Full Text PDF

Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e.

View Article and Find Full Text PDF

Using a unique 8-year data set (2010-2017) of phloem data, we studied the effect of temperature and precipitation on the phloem anatomy (conduit area, widths of ring, early and late phloem) and xylem-ring width in two coexisting temperate tree species, Picea abies and Fagus sylvatica, from three contrasting European temperate forest sites. Histometric analyses were performed on microcores taken from tree stems in autumn. We found high interannual variability and sensitivity of phloem anatomy and xylem-ring widths to precipitation and temperature; however, the responses were species- and site-specific.

View Article and Find Full Text PDF
Article Synopsis
  • - The study emphasizes the importance of high-resolution annual forest growth maps, using tree-ring width (TRW) data, to better understand forest carbon sequestration and the impact of climate change and drought on forest ecosystems.
  • - By integrating high-resolution Earth observation data with climate and topography information, the researchers found that species-specific models could explain over 52% of variance in tree growth, enhancing the accuracy of growth predictions compared to using just climate and elevation data.
  • - The research successfully generated a map of annual TRW for 2021, demonstrating that combining different data sources can lead to more effective models for forest growth, while also identifying areas where predictions may be less reliable, particularly in climate marginal zones.
View Article and Find Full Text PDF

It is assumed that people practiced woodland management, i.e., coppicing and pollarding, in prehistory, but details are poorly known.

View Article and Find Full Text PDF
Article Synopsis
  • There is ongoing debate about how global climate change affects the timing of spring phenomena in plants, particularly in coniferous forests, with evidence suggesting varying responses based on temperature changes.
  • Researchers collected data on xylem cell-wall-thickening onset dates from 20 coniferous species across a wide temperature gradient in the Northern Hemisphere to examine these effects.
  • A significant thermal threshold of approximately 4.9°C was identified, indicating that above this temperature, the impact of rising temperatures on xylem phenology decreases, highlighting the need to incorporate this threshold into Earth-System Models for better predictions of climate and ecosystem interactions.
View Article and Find Full Text PDF

Dendrochronology, the science of dating tree rings in the wood, defines in which calendar year a particular tree ring was formed. The method can be used to determine the age and authentication of wooden musical instruments. We present a protocol describing how to perform a dendrochronological analysis on stringed instruments and how to interpret the dating.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is predicted to shift the distribution of tree species in Europe, impacting the European beech, which is significant both ecologically and economically.
  • In Slovenia, European beech constitutes 33% of forest growth, but this proportion varies across Europe, raising questions about the role of climate vs. historical management practices.
  • The study used data from 341,341 forest stands and modeled climate information to explore how climatic factors influence the dominance of beech trees, helping improve future forest management strategies.
View Article and Find Full Text PDF
Article Synopsis
  • The growth of beech trees (Fagus sylvatica) has been negatively impacted by climate variability, showing declines in recent decades across a large geographic range.* -
  • Models predict that by 2090, growth could decrease by 20% to over 50%, particularly in southern regions where drought conditions are expected to worsen due to climate change.* -
  • These anticipated declines in forest productivity pose significant ecological and economic risks, highlighting the urgent need for adaptive strategies in forest management.*
View Article and Find Full Text PDF

Wood formation consumes around 15% of the anthropogenic CO emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how tree resilience to drought affects survival by analyzing a database of >3,500 trees from 118 sites, comparing those that survived droughts to those that died.
  • - Trees that died during droughts showed lower resilience to prior droughts, indicating that resilience is key for long-term survival.
  • - Angiosperms and gymnosperms exhibit differing strategies for dealing with drought: angiosperms struggle with initial drought impacts, while gymnosperms have difficulty recovering to pre-drought growth rates.
View Article and Find Full Text PDF
Article Synopsis
  • Plant traits, which include various characteristics like morphology and physiology, play a crucial role in how plants interact with their environment and impact ecosystems, making them essential for research in areas like ecology, biodiversity, and environmental management.
  • The TRY database, established in 2007, has become a vital resource for global plant trait data, promoting open access and enabling researchers to identify and fill data gaps for better ecological modeling.
  • Although the TRY database provides extensive data, there are significant areas lacking consistent measurements, particularly for continuous traits that vary among individuals in their environments, presenting a major challenge that requires collaboration and coordinated efforts to address.
View Article and Find Full Text PDF

Three gridded datasets containing interpolated daily and monthly precipitation and temperature values over the past five decades were tested against four tree-ring chronologies of oak (Quercus robur and Q. petraea). The objective of this research was to investigate the climate-growth relationship and whether the Pearson's product-moment correlation coefficients differ significantly if mean monthly precipitation and temperature data from the different climate databases, CRU, E-OBS and ROCADA are used.

View Article and Find Full Text PDF

Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how wood formation in Northern Hemisphere conifers is affected by climate change, focusing on the phenology of wood compared to leaf phenology.
  • Researchers analyzed different ecophysiological models to predict the starting date of xylem cell enlargement in four conifer species, finding that the chilling-influenced heat-sum model was the most accurate, with a prediction error of just 7.7 days.
  • The results suggest that both chilling and warm temperatures influence the onset of wood formation, and climate change may lead to complex effects, potentially speeding up wood formation while also increasing temperature requirements due to less chilling accumulation.
View Article and Find Full Text PDF

Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe.

View Article and Find Full Text PDF

We investigated the dynamics of xylem differentiation processes and vessel characteristics in Fagus sylvatica L. to evaluate the plasticity of xylem structures under different environmental conditions. In 2008-10, analyses were performed on microcores collected weekly from two temperate sites: Menina planina (1200 m above sea level (a.

View Article and Find Full Text PDF

Physiological and ecological mechanisms that define treelines are still debated. It has been suggested that the absence of trees above the treeline is caused by low temperatures that limit growth. Thus, we hypothesized that there is a critical minimum temperature (CT) preventing xylogenesis at treeline.

View Article and Find Full Text PDF

To understand better the adaptation strategies of intra-annual radial growth in and to local environmental conditions, we examined the seasonal rhythm of cambial activity and cell differentiation at tissue and cellular levels. Two contrasting sites differing in temperature and amount of precipitation were selected for each species, one typical for their growth and the other represented border climatic conditions, where the two species coexisted. Mature trees from Mediterranean (Spain) and sub-Mediterranean (Slovenia) sites, and from sub-Mediterranean (Slovenia) and temperate (Slovenia) sites were selected.

View Article and Find Full Text PDF

Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca.

View Article and Find Full Text PDF

The interaction between xylem phenology and climate assesses forest growth and productivity and carbon storage across biomes under changing environmental conditions. We tested the hypothesis that patterns of wood formation are maintained unaltered despite the temperature changes across cold ecosystems. Wood microcores were collected weekly or biweekly throughout the growing season for periods varying between 1 and 13 years during 1998-2014 and cut in transverse sections for assessing the onset and ending of the phases of xylem differentiation.

View Article and Find Full Text PDF
Article Synopsis
  • Tree mortality significantly influences forest dynamics, highlighting the need for reliable indicators to predict tree death.
  • The diversity in sampling strategies and growth variables used in tree-ring studies has made it challenging to compare results, prompting an assessment of methodological decisions in developing growth-mortality relationships.
  • Using logistic mixed-effects regression models on various datasets, the study finds that growth level is a crucial predictor for some species, while growth trend is important for others, with the length of the time window affecting reliability based on sampling schemes.
View Article and Find Full Text PDF