Plant litter decomposition is a key ecosystem process in carbon and nutrient cycling, and is heavily affected by changing climate. While the direct effects of drought on decomposition are widely studied, in order to better predict the overall drought effect, indirect effects associated with various drought-induced changes in ecosystems should also be quantified. We studied the effect of an extreme (5-month) experimental drought on decomposition, and if this effect varies with two dominant perennial grasses, plant parts (leaves vs.
View Article and Find Full Text PDFResearchers use both experiments and observations to study the impacts of climate change on ecosystems, but results from these contrasting approaches have not been systematically compared for droughts. Using a meta-analysis and accounting for potential confounding factors, we demonstrate that aboveground biomass responded only about half as much to experimentally imposed drought events as to natural droughts. Our findings indicate that experimental results may underestimate climate change impacts and highlight the need to integrate results across approaches.
View Article and Find Full Text PDFFeaturing a transitional zone between closed forests and treeless steppes, forest-steppes cover vast areas, and have outstanding conservation importance. The components of this mosaic ecosystem can conveniently be classified into two basic types, forests and grasslands. However, this dichotomic classification may not fit reality as habitat organization can be much more complex.
View Article and Find Full Text PDFFor developing global strategies against the dramatic spread of invasive species, we need to identify the geographical, environmental, and socioeconomic factors determining the spatial distribution of invasive species. In our study, we investigated these factors influencing the occurrences of common milkweed ( L.), an invasive plant species that is of great concern to the European Union (EU).
View Article and Find Full Text PDFThe root electrical capacitance (C ) method is suitable for assessing root growth and activity, but soil water content (SWC) strongly influences the measurement results. This study aimed to adapt the method for field monitoring by evaluating the effect of SWC on root capacitance to ensure the comparability of C detected at different SWC. First a pot experiment was conducted with maize and soybean to establish C -SWC functions for the field soil.
View Article and Find Full Text PDF