Publications by authors named "Katalin Ludanyi"

spl1-1 was originally identified as a spontaneous mutation genetically interacting with sep1-1 and cdc4-8 in producing multinucleate syncytia. This study shows that it is allelic with the proline-tRNA(CGG) gene SPATRNAPRO.02.

View Article and Find Full Text PDF

To explore early signature genes playing critical roles in the initial steps in an autoimmune murine model of rheumatoid arthritis (RA) (proteoglycan (PG)-induced arthritis; PGIA), we performed gene expression profiling of "arthritogenic" spleen cells stimulated with cartilage PG, and compared them to differentially expressed genes, identified in joints prior to the onset of arthritis, and then in the acute and chronic phases of the disease. A total of 280 genes were up-regulated and 226 genes were suppressed in in vitro PG-stimulated lymphocytes at a minimum of 2-fold expression change. Functional gene classification identified several major clusters of biological activity.

View Article and Find Full Text PDF

Objective: To better understand the role of antigen (arthritogenic epitope)-specific T cells in the development of autoimmune arthritis.

Methods: A transgenic (Tg) mouse expressing the T cell receptor (TCR) Valpha1.1 and V(beta)4 chains specific for a dominant arthritogenic epitope (designated 5/4E8) of human cartilage proteoglycan (HuPG) aggrecan was generated.

View Article and Find Full Text PDF

Proteoglycan (PG)-induced arthritis, a murine model of rheumatoid arthritis, is characterized by autoimmunity against mouse cartilage PG and chronic joint inflammation. L-selectin (CD62L) and CD44 are major adhesion molecules on leukocytes that regulate their homing to lymph nodes and entry into inflamed tissues. In the present study, we studied the requirement for CD44 and CD62L expression for mediating lymphocyte homing, thus permitting the development of autoimmunity vs mediating the entry of leukocytes into the joints, thus allowing inflammation in PG-induced arthritis.

View Article and Find Full Text PDF

Sphingomyelinase (SMase)-mediated release of ceramide in the plasma membrane of T-lymphocytes induced by different stimuli such as ligation of Fas/CD95, irradiation, stress, inflammation or anticancer drugs primarily involves mitochondrial apoptosis signaling, but under specific conditions non-apoptotic Fas-signaling was also reported. Here we investigated, using a quantitative simulation model with exogenous C2-ceramide (and SMase), the dependence of activation and fate of T-cells on the strength and duration of ceramide accumulation. A murine, influenza virus hemagglutinin-specific T-helper cell (IP12-7) alone or together with interacting antigen presenting B-cells (APC) was used.

View Article and Find Full Text PDF

The mechanisms whereby Vitamin A regulates the immune system are poorly understood. We have shown previously that retinoic acids, the Vitamin A derivatives, promote both apoptosis of neglected thymocytes and the activation-induced cell death of peripheral T-cells via ligating the nuclear retinoid receptor (RAR) gamma. In the present study, we found that human peripheral T-cells express RARalpha and gamma, but not RARbeta.

View Article and Find Full Text PDF

The role of antigen-presenting cells (APC) in regulating helper T cell responses and activation-induced cell death (AICD) was investigated in vitro. T cell activation was monitored by measuring the early rise of intracellular free calcium [Ca+]ic, mRNA and cell surface expression of activation and apoptotic molecules, the production of cytokines and the activation of transcription factors. Our results demonstrate that the unique characteristics of a given APC can modify the threshold, kinetics and magnitude of the T cell response.

View Article and Find Full Text PDF

Engagement of antigen receptors on immature B cells induces apoptosis, while at the mature stage, it stimulates cell activation and proliferation. The difference in B cell receptor (BCR)-mediated signaling pathways regulating death or survival of B cells is not fully understood. We aimed to characterize the pathway leading to BCR-driven apoptosis.

View Article and Find Full Text PDF

Myeloid dendritic cells (DC) are representatives of a rare and phenotypically diverse population of professional antigen presenting cells possessing high functional heterogeneity and flexibility. Here we studied the phenotypic, functional and electrophysiological characteristics of KG-1 cells, an erythroleukemia model cell line, which shares morphological and physiological similarities with immature and mature myeloid DC. We compared the expression of internalizing receptors and other cell surface molecules, antigen uptake and migration of unstimulated and activated KG-1 cells with the characteristics of immature and mature DC.

View Article and Find Full Text PDF