Publications by authors named "Katalin Csanaky"

The intracellular transport of receptor tyrosine kinases results in the differential activation of various signaling pathways. In this study, optogenetic stimulation of fibroblast growth factor receptor type 1 (FGFR1) was performed to study the effects of subcellular targeting of receptor kinases on signaling and neurite outgrowth. The catalytic domain of FGFR1 fused to the algal light-oxygen-voltage-sensing (LOV) domain was directed to different cellular compartments (plasma membrane, cytoplasm and nucleus) in human embryonic kidney (HEK293) and pheochromocytoma (PC12) cells.

View Article and Find Full Text PDF

Diabetic nephropathy is the leading cause of end-stage renal failure and accounts for 30-40 % of patients entering renal transplant programmes. The nephroprotective effects of the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP38) against diabetes have been shown previously, but the molecular mechanisms responsible for these effects remain unknown. In the present study, we showed that PACAP treatment counteracted the diabetes-induced increase in the level of the proapoptotic pp38MAPK and cleaved caspase-3 and also decreased the p60 subunit of NFκB.

View Article and Find Full Text PDF

Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide with trophic and cytoprotective effects, has been shown to affect cell survival, proliferation, and also differentiation of various cell types. The high PACAP level in the milk and its changes during lactation suggest a possible effect of PACAP on the differentiation of mammary epithelial cells. Mammary cell differentiation is regulated by hormones, growth factors, cytokines/chemokines, and angiogenic proteins.

View Article and Find Full Text PDF

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread occurrence in the nervous system and peripheral organs, including the mammary gland. Previously, we have shown that PACAP38 is present in the human milk at higher levels than in respective blood samples. However, it is not known how PACAP levels and the expression of PAC1 receptor change during lactation.

View Article and Find Full Text PDF

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with highly potent neurotrophic and neuroprotective effects. PACAP and its receptors occur in the retina and PACAP has been applied in animal models of metabolic retinal disorders to reduce structural and functional damage. Furthermore, PACAP has been implicated as a potential anti-diabetic peptide.

View Article and Find Full Text PDF

Objective: Pituitary adenylate cyclase activating polypeptide (PACAP) is a pleiotropic and multifunctional neuropeptide widely distributed throughout the body. It is involved in the regulation of various physiological and pathophysiological processes, such as reproduction, thermoregulation, motor activity, brain development, neuronal survival, inflammation and pain. Since little is known about its distribution in humans, our aim was to examine PACAP-38 in human plasma.

View Article and Find Full Text PDF