Purpose: Early results from the phase II MEDIOLA study (NCT02734004) in germline BRCA1- and/or BRCA2-mutated (gBRCAm) platinum-sensitive relapsed ovarian cancer (PSROC) showed promising efficacy and safety with olaparib plus durvalumab. We report efficacy and safety of olaparib plus durvalumab in an expansion cohort of women with gBRCAm PSROC (gBRCAm expansion doublet cohort) and two cohorts with non-gBRCAm PSROC, one of which also received bevacizumab (non-gBRCAm doublet and triplet cohorts).
Patients And Methods: In this open-label, multicenter study, PARP inhibitor-naïve patients received olaparib plus durvalumab treatment until disease progression; the non-gBRCAm triplet cohort also received bevacizumab.
Introduction: Preclinical studies have demonstrated increased efficacy with combined DNA damage response inhibition and immune checkpoint blockade compared with either alone. We assessed olaparib in combination with durvalumab in patients with relapsed small cell lung cancer (SCLC).
Methods: Patients with previously treated limited or extensive-stage SCLC received oral olaparib 300 mg twice daily, as run-in for 4 weeks, then with durvalumab (1500 mg intravenously every 4 weeks) until disease progression.
Introduction: The progression-free survival of patients with HER2-positive metastatic breast cancer is significantly extended by a combination of two monoclonal antibodies, trastuzumab and pertuzumab, which target independent epitopes of the extracellular domain of HER2. The improved efficacy of the combination over individual antibody therapies targeting HER2 is still being investigated, and several molecular mechanisms may be in play: the combination downregulates HER2, improves antibody-dependent cell mediated cytotoxicity, and/or affects the organization of surface-expressed antigens, which may attenuate downstream signaling.
Methods: By combining protein engineering and quantitative single molecule localization microscopy (qSMLM), here we both assessed and optimized clustering of HER2 in cultured breast cancer cells.
The high specificity and favorable pharmacological properties of monoclonal antibodies (mAbs) have prompted significant interest in re-engineering this class of molecules to add novel functionalities for enhanced therapeutic and diagnostic potential. Here, we used the high affinity, meditope-Fab interaction to template and drive the rapid, efficient, and stable site-specific formation of a disulfide bond. We demonstrate that this template-catalyzed strategy provides a consistent and reproducible means to conjugate fluorescent dyes, cytotoxins, or "click" chemistry handles to meditope-enabled mAbs (memAbs) and memFabs.
View Article and Find Full Text PDFWe have previously identified a cyclic peptide called meditope which binds to the central cavity of the Fab portion of cetuximab and shown that this peptide binding site can be grafted, or 'meditope-enabled', onto trastuzumab. This peptide has been shown to act as a hitch for the non-covalent attachment of imaging agents to meditope-enabled antibodies. Herein, we explore the process of grafting this peptide binding site onto M5A, an anti-CEA antibody in clinical trials for cancer diagnostics.
View Article and Find Full Text PDFLoss of repressor element 1 silencing transcription factor (REST) occurs in 20% of breast cancers and correlates with a poor patient prognosis. However, the molecular basis for enhanced malignancy in tumors lacking REST (RESTless) is only partially understood. We used multiplatform array data from the Cancer Genome Atlas to identify consistent changes in key signaling pathways.
View Article and Find Full Text PDFThe therapeutic potential of stem cells is limited by the non-uniformity of their phenotypic state. Thus it would be advantageous to noninvasively monitor stem cell status. Driven by this challenge, we employed multidimensional multiphoton microscopy to quantify changes in endogenous fluorescence occurring with pluripotent stem cell differentiation.
View Article and Find Full Text PDFThe transcription factor RE1 silencing transcription factor (REST) is lost in approximately 20% of breast cancers. Although it is known that these RESTless tumors are highly aggressive and include all tumor subtypes, the underlying tumorigenic mechanisms remain unknown. In this study, we show that loss of REST results in upregulation of LIN28A, a known promoter of tumor development, in breast cancer cell lines and human breast tumors.
View Article and Find Full Text PDF