Publications by authors named "Kassner P"

Background: RPT193 is an orally administered small molecule antagonist of the human C-C motif chemokine receptor 4 (CCR4) that inhibits the migration and downstream activation of T-helper Type 2 (Th2) cells. We investigated single- and multiple-ascending doses of RPT193 in healthy subjects, and multiple doses of RPT193 in subjects with moderate-to-severe atopic dermatitis (AD).

Methods: This was a first-in-human randomized, placebo-controlled Phase 1a/1b monotherapy study (NCT04271514) to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and CCR4 surface receptor occupancy in eligible healthy subjects and subjects with moderate-to-severe AD.

View Article and Find Full Text PDF

General control nonderepressible 2 (GCN2) protein kinase is a cellular stress sensor within the tumor microenvironment (TME), whose signaling cascade has been proposed to contribute to immune escape in tumors. Herein, we report the discovery of cell-potent GCN2 inhibitors with excellent selectivity against its closely related Integrated Stress Response (ISR) family members heme-regulated inhibitor kinase (HRI), protein kinase R (PKR), and (PKR)-like endoplasmic reticulum kinase (PERK), as well as good kinome-wide selectivity and favorable PK. In mice, compound engages GCN2 at levels ≥80% with an oral dose of 15 mg/kg BID.

View Article and Find Full Text PDF

The Epstein-Barr Virus (EBV) is involved in the etiology of multiple hematologic and epithelial human cancers. EBV+ tumors employ multiple immune escape mechanisms, including the recruitment of immunosuppressive regulatory T cells (Treg). Here, we show some EBV+ tumor cells express high levels of the chemokines CCL17 and CCL22 both in vitro and in vivo and that this expression mirrors the expression levels of expression of the EBV LMP1 gene in vitro.

View Article and Find Full Text PDF

Background: Checkpoint inhibitors (CPIs) such as anti-PD(L)-1 and anti-CTLA-4 antibodies have resulted in unprecedented rates of antitumor responses and extension of survival of patients with a variety of cancers. But some patients fail to respond or initially respond but later relapse as they develop resistance to immune therapy. One of the tumor-extrinsic mechanisms for resistance to immune therapy is the accumulation of regulatory T cells (T) in tumors.

View Article and Find Full Text PDF

The deubiquitinase USP7 regulates the levels of multiple proteins with roles in cancer progression and immune response. Thus, USP7 inhibition may decrease oncogene function, increase tumor suppressor function, and sensitize tumors to DNA-damaging agents. We have discovered a novel chemical series that potently and selectively inhibits USP7 in biochemical and cellular assays.

View Article and Find Full Text PDF

The C-C chemokine receptor 4 (CCR4) is broadly expressed on regulatory T cells (T) as well as other circulating and tissue-resident T cells. T can be recruited to the tumor microenvironment (TME) through the C-C chemokines CCL17 and CCL22. T accumulation in the TME has been shown to dampen the antitumor immune response and is thought to be an important driver in tumor immune evasion.

View Article and Find Full Text PDF

USP7 is a promising target for cancer therapy as its inhibition is expected to decrease function of oncogenes, increase tumor suppressor function, and enhance immune function. Using a structure-based drug design strategy, a new class of reversible USP7 inhibitors has been identified that is highly potent in biochemical and cellular assays and extremely selective for USP7 over other deubiquitinases. The succinimide was identified as a key potency-driving motif, forming two strong hydrogen bonds to the allosteric pocket of USP7.

View Article and Find Full Text PDF

Recruitment of suppressive CD4 FOXP3 regulatory T cells (T) to the tumor microenvironment (TME) has the potential to weaken the antitumor response in patients receiving treatment with immuno-oncology (IO) agents. Human T express CCR4 and can be recruited to the TME through the CC chemokine ligands CCL17 and CCL22. In some cancers, T accumulation correlates with poor patient prognosis.

View Article and Find Full Text PDF

Autophagy is the primary process for recycling cellular constituents through lysosomal degradation. In addition to nonselective autophagic engulfment of cytoplasm, autophagosomes can recognize specific cargo by interacting with ubiquitin-binding autophagy receptors such as SQSTM1/p62 (sequestosome 1). This selective form of autophagy is important for degrading aggregation-prone proteins prominent in many neurodegenerative diseases.

View Article and Find Full Text PDF

Unbiased discovery approaches have the potential to uncover neurobiological insights into CNS disease and lead to the development of therapies. Here, we review lessons learned from imaging-based screening approaches and recent advances in these areas, including powerful new computational tools to synthesize complex data into more useful knowledge that can reliably guide future research and development.

View Article and Find Full Text PDF

Objective: Although the human genome encodes ∼ 20,000 protein-coding genes, only a very small fraction of these have been explored as potential targets for therapeutic development. The challenge of identifying and validating new protein targets has contributed to the significant reduction in the productivity of the pharmaceutical industry in the recent decade, highlighting the continued need to find new therapeutic targets.

Research Design And Methods: The traditional methods to discover new targets are expensive, low throughput and time consuming, usually taking years to validate or invalidate a target.

View Article and Find Full Text PDF

Sphingosine kinases (SPHKs) are enzymes that phosphorylate the lipid sphingosine, leading to the formation of sphingosine-1-phosphate (S1P). In addition to the well established role of extracellular S1P as a mitogen and potent chemoattractant, SPHK activity has been postulated to be an important intracellular regulator of apoptosis. According to the proposed rheostat theory, SPHK activity shifts the intracellular balance from the pro-apoptotic sphingolipids ceramide and sphingosine to the mitogenic S1P, thereby determining the susceptibility of a cell to apoptotic stress.

View Article and Find Full Text PDF

Advances in the fields of cancer initiating cells and high-throughput in vivo shRNA screens have highlighted a need to observe the growth of tumor cells in cancer models at the clonal level. While in vivo cancer cell growth heterogeneity in xenografts has been described, it has yet to be measured. Here, we tested an approach to quantify the clonal growth heterogeneity of cancer cells in subcutaneous xenograft mouse models.

View Article and Find Full Text PDF

Background: Erythropoiesis-stimulating agents (ESAs) stimulate formation of red blood cells by binding to and activating Epo receptors (EpoR) on erythroid progenitor cells. Beyond successful treatment of anemia, ESAs have been reported to reduce damage following insult to organs, including the kidney, possibly via direct activation of EpoR. However, data on ESA effects outside hematopoietic functions are conflicting.

View Article and Find Full Text PDF

Despite the prevalence of KRAS mutations in human cancers, there remain no targeted therapies for treatment. The serine-threonine kinase STK33 has been proposed to be required for the survival of mutant KRAS-dependent cell lines, suggesting that small molecule kinase inhibitors of STK33 may be useful to treat KRAS-dependent tumors. In this study, we investigated the role of STK33 in mutant KRAS human cancer cells using RNA interference, dominant mutant overexpression, and small molecule inhibitors.

View Article and Find Full Text PDF

Screening small interfering RNA (siRNA) libraries holds the potential to elucidate gene function as well as discover new targets for the therapeutic treatment of disease. Since the inception of siRNA as a discovery tool, there have been progressive improvements in siRNA design algorithms, the transfection reagents used to deliver them, and the assay formats used to monitor phenotypic changes. These changes have helped to improve the quality of the data emerging from siRNA screens.

View Article and Find Full Text PDF

Certain oncology trials showed worse clinical outcomes in the erythropoiesis-stimulating agent (ESA) arm. A potential explanation was that ESA-activated erythropoietin (Epo) receptors (EpoRs) promoted tumor cell growth. Although there were supportive data from preclinical studies, those findings often used invalidated reagents and methodologies and were in conflict with other studies.

View Article and Find Full Text PDF

RNA interference (RNAi) mediated loss-of-function screens have the potential to delineate biological functions of genes and the proteins they encode. RNAi has proven to be a promising technology for identification and validation of new targets for the pharmacological treatment of many diseases including cancer. Here we review the use of high-throughput RNAi screens, examine the types of targets pursued for oncology indications, and discuss the integration of diverse datasets in both target discovery and drug discovery programs.

View Article and Find Full Text PDF

Erythropoietin receptor (EpoR) has been reported to be overexpressed in tumours and has raised safety concerns regarding the use of erythropoiesis-stimulating agents (ESAs) to treat anaemia in cancer patients. To investigate the potential for EpoR to be overexpressed in tumours, we have evaluated human tumours for amplification of the EPOR locus, levels of EPOR transcripts, and expression of surface EpoR protein. Gene amplification analysis of 1083 solid tumours found that amplification of the EPOR locus was rare with frequencies similar to other non-oncogenes.

View Article and Find Full Text PDF

High throughput technologies have the potential to affect all aspects of drug discovery. Considerable attention is paid to high throughput screening (HTS) for small molecule lead compounds. The identification of the targets that enter those HTS campaigns had been driven by basic research until the advent of genomics level data acquisition such as sequencing and gene expression microarrays.

View Article and Find Full Text PDF

Individuals within a species have genetic differences which ultimately result in the spectrum of phenotypic variation that we observe. Genetic variation exists at the nucleotide level in the form of single nucleotide polymorphisms (SNPs), and at a structural level as inversions, deletions and amplifications of larger stretches of nucleotides. Profiling of human and mouse genomes has identified numerous genomic segmental copy number variations (CNVs) throughout these genomes.

View Article and Find Full Text PDF

The contribution to genetic diversity of genomic segmental copy number variations (CNVs) is less well understood than that of single-nucleotide polymorphisms (SNPs). While less frequent than SNPs, CNVs have greater potential to affect phenotype. In this study, we have performed the most comprehensive survey to date of CNVs in mice, analyzing the genomes of 42 Mouse Phenome Consortium priority strains.

View Article and Find Full Text PDF

Although phage display is a powerful way of selecting ligands against purified target proteins, it is less effective for selecting functional ligands for complex targets like living cells. Accordingly, phage display has had limited utility in the development of targeting agents for gene therapy vectors. By adapting a filamentous bacteriophage for gene delivery to mammalian cells, however, we show here that it is possible to screen phage libraries for functional ligands capable of delivering DNA to cells.

View Article and Find Full Text PDF