Publications by authors named "Kassidy K Huynh"

Pathogenic mycobacteria, which cause multiple diseases including tuberculosis, secrete factors essential for disease via the ESX-1 protein export system and are partially protected from host defenses by their lipid-rich cell envelopes. These pathogenic features of mycobacterial biology are believed to act independently of each other. Key ESX-1 components include three ATPases, and EccA1 (Mycobacterium marinum MMAR_5443; M.

View Article and Find Full Text PDF

Burkholderia cenocepacia, a member of the Burkholderia cepacia complex, is an opportunistic pathogen that causes devastating infections in patients with cystic fibrosis. The ability of B.  cenocepacia to survive within host cells could contribute significantly to its virulence in immunocompromised patients.

View Article and Find Full Text PDF

Mycobacterium tuberculosis is an enormously successful human pathogen that can infect its host for decades without causing clinical disease, only to reactivate when host immunity is compromised. A normal immune response thus contains bacterial spread without inducing sterilizing immunity, therefore benefitting both host and pathogen. Recent work has begun to outline the complexity of this host-pathogen interaction and to reveal how the homeostatic balance between the two is achieved.

View Article and Find Full Text PDF

Strains of the Burkholderia cepacia complex can survive within macrophages by arresting the maturation of phagocytic vacuoles. The bacteria preclude fusion of the phagosome with lysosomes by a process that is poorly understood. Using murine macrophages, we investigated the stage at which maturation is arrested and analyzed the underlying mechanism.

View Article and Find Full Text PDF

The profound luminal acidification essential for the degradative function of lysosomes requires a counter-ion flux to dissipate an opposing voltage that would prohibit proton accumulation. It has generally been assumed that a parallel anion influx is the main or only counter-ion transport that enables acidification. Indeed, defective anion conductance has been suggested as the mechanism underlying attenuated lysosome acidification in cells deficient in CFTR or ClC-7.

View Article and Find Full Text PDF

Macrophages are key to the pathogenesis of atherosclerosis. They take up and store excessive amounts of cholesterol associated with modified low density lipoprotein, eventually becoming foam cells that display altered immune responsiveness. We studied the effects of cholesterol accumulation on phagosome formation and maturation, using lipid transport antagonists and cholesterol transport-deficient mutants.

View Article and Find Full Text PDF

Dynamins have a well-established role in the fission of vesicles at sites of endocytosis. In phagocytosis, however, a role for certain dynamin isoforms has been reported in the full extension of pseudopods during phagosome formation, not in fission of the phagocytic vacuole. Recent studies in Caenorhabditis elegans have now uncovered a new function of dynamin in phagosome maturation.

View Article and Find Full Text PDF

Phagocytosis is essential for the elimination of pathogens and for clearance of apoptotic bodies. The ingestion process entails extensive remodeling of the cellular membranes, particularly when large and/or multiple particles are engulfed. The membrane fusion and fission events that accompany phagocytosis are described.

View Article and Find Full Text PDF

To survive within the host, pathogens such as Mycobacterium tuberculosis and Helicobacter pylori need to evade the immune response and find a protected niche where they are not exposed to microbicidal effectors. The pH of the microenvironment surrounding the pathogen plays a critical role in dictating the organism's fate. Specifically, the acidic pH of the endocytic organelles and phagosomes not only can affect bacterial growth directly but also promotes a variety of host microbicidal responses.

View Article and Find Full Text PDF

Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the maturation process. We used cells from LAMP-deficient mice to analyze the role of these proteins in phagosome maturation. Macrophages from LAMP-1- or LAMP-2-deficient mice displayed normal fusion of lysosomes with phagosomes.

View Article and Find Full Text PDF

Strains of the Burkholderia cepacia complex (Bcc) are opportunistic bacteria that can cause life-threatening infections in patients with cystic fibrosis and chronic granulomatous disease. Previous work has shown that Bcc isolates can persist in membrane-bound vacuoles within amoeba and macrophages without bacterial replication, but the detailed mechanism of bacterial persistence is unknown. In this study, we have investigated the survival of the Burkholderia cenocepacia strain J2315 within RAW264.

View Article and Find Full Text PDF

Regulation of calpain by phosphorylation has often been suggested, but has proved difficult to detect. Calpains extracted from mammalian tissue are reported to contain 2-4 mol phosphate/mol of enzyme distributed over multiple sites, but phosphate groups are not detectable in the X-ray structures of recombinant calpain. Some serine and threonine residues in the large subunit of rat m-calpain were converted to aspartic or glutamic acid residues, at sites suggested by previous studies, to assess the probable effects of phosphate groups on the enzyme.

View Article and Find Full Text PDF