Publications by authors named "Kasra Einalipour Eshkalak"

Carbon based two-dimensional (2D) nanostructures have exceptional mechanical properties. Analysis of crack pathway in 2D graphenic materials allows for developing crack arrestors. Herein, we serve Molecular Dynamics (MD) to simulate the fracture behavior of 2D graphene-like boron-carbide (BC) by manipulating the crack length (10, 20, 30, 40, and 50 Å) and the crack arrestor (circular and square).

View Article and Find Full Text PDF

Carbon, nitrogen, and boron nanostructures are promising ballistic protection materials due to their low density and excellent mechanical properties. In this study, the ballistic properties of C3N and BC3 nanosheets against hypersonic bullets with Mach numbers greater than 6 were studied. The critical perforation conditions, and thus, the intrinsic impact strength of these 2D materials were determined by simulating ballistic curves of C3N and BC3 monolayers.

View Article and Find Full Text PDF

This study unveils CN, a new material that serves as an excellent reinforcement to enhance the mechanical properties of aluminum using a molecular dynamics simulation method. Results show that the CN nanosheets greatly improve the mechanical properties of aluminum-based nanocomposites. With only 1.

View Article and Find Full Text PDF